留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑监测离群值朱家店滑坡位移预测研究

丁戈媛

丁戈媛. 考虑监测离群值朱家店滑坡位移预测研究[J]. 机械工程学报, 2020, 28(1): 132-140. doi: 10.13544/j.cnki.jeg.2019-235
引用本文: 丁戈媛. 考虑监测离群值朱家店滑坡位移预测研究[J]. 机械工程学报, 2020, 28(1): 132-140. doi: 10.13544/j.cnki.jeg.2019-235
DING Geyuan. DISPLACEMENT PREDICTION OF THE ZHUJIADIAN LANDSLIDE WITH OUTLIERS[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 132-140. doi: 10.13544/j.cnki.jeg.2019-235
Citation: DING Geyuan. DISPLACEMENT PREDICTION OF THE ZHUJIADIAN LANDSLIDE WITH OUTLIERS[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 132-140. doi: 10.13544/j.cnki.jeg.2019-235

考虑监测离群值朱家店滑坡位移预测研究

doi: 10.13544/j.cnki.jeg.2019-235
基金项目: 

国家自然科学基金重点项目 41630643

详细信息
    作者简介:

    丁戈媛(1999-),女,本科生,土木工程专业. E-mail: 1198713624@qq.com

  • 中图分类号: P642.22

DISPLACEMENT PREDICTION OF THE ZHUJIADIAN LANDSLIDE WITH OUTLIERS

Funds: 

the National Natural Science Foundation of China 41630643

  • 摘要: 滑坡位移预测预报是滑坡防灾减灾的重要组成部分,提高滑坡位移预测的准确性与精确度是该项研究的重点与难点。本文在滑坡位移预测中考虑了监测样本的离群值,通过忽略、指定与修正离群值3种方式,研究滑坡位移预测样本离群值的最优处理方式。以三峡库区朱家店滑坡为例,基于ARIMA(pdq)模型,分别对累积位移与位移速率时间序列开展了预测研究。研究结果表明:修正离群值的预测结果介于忽略和指定离群值两者之间,更适用于存在监测离群值的滑坡位移预测;对于ARIMA模型,更适合采用位移速率进行预测预报;使用位移速率时间序列ARIMA(1,0,1)并修正离群值的预测结果为:2016年和2017年6月份滑坡前缘GP3“阶跃”位移分别为79.0mm和70.2mm,截止2017年8月,GP3累积位移将达1647.7mm。

     

  • 图  朱家店滑坡地理位置与全貌

    Figure  1.  Situation and photograph of the Zhujiadian landslide

    图  滑坡主滑剖面(Y-X)

    Figure  2.  Geological profile along section Y-X

    图  朱家店滑坡监测系统平面布置图

    Figure  3.  Topographic map and the monitoring works

    图  GPS监测点位移、库水位与降雨量曲线

    Figure  4.  Time series of displacement, rainfall and water level

    图  GP3监测墩倾斜变形对比图

    a. 2013年GP3变形情况;b. 2015年GP3变形情况

    Figure  5.  GP3 pier deformation between 2013 & 2015

    图  ARIMA模型参数确定流程图

    Figure  6.  Flowchart of ARIMA model's parameter determination

    图  累积位移与位移速率的ACF/PACF系数

    a.累积位移(偏)自相关性系数柱状图;b.位移速率(偏)自相关性柱状图

    Figure  7.  ACF/PACF coefficients of accumulated displacement and displacement rate

    图  3种离群值处理方式下累积位移预测结果

    Figure  8.  Accumulated displacement prediction results by three kinds outlier handing

    图  3种离群值处理方式下位移速率预测结果

    Figure  9.  Displacement rate prediction results by three kinds outlier handing

    图  10  累积位移预测最终结果

    Figure  10.  Final prediction results of accumulated displacement

    表  1  自2015/6~2016/5累积位移预测结果

    Table  1.   Accumulated displacement prediction results from 2015/6 to 2016/5

    预测时间 2015/6 2015/7 2015/8 2015/9 2015/10 2015/11 2015/12 2016/1 2016/2 2016/3 2016/4 2016/5
    位移量
    /mm
    1171.58 1188.12 1189.36 1266.37 1259.44 1266.92 1265.31 1280.52 1283.20 1272.31 1289.51 1307.34
    下载: 导出CSV

    表  2  累积位移与位移速率拟合效果和预测“阶跃”位移量

    Table  2.   R2 and "step-like" results of accumulated displacement and displacement rate prediction

    预测目标 累积位移 位移速率
    离群值处理方案 忽略 指定 修正 忽略 指定 修正
    R2 0.878 0.933 0.926 0.852 0.919 0.903
    2015/6 2203.0 / 1307.4 1042.7 / 146.7
    2016/6 2072.2 1335.8 1482.0 225.7 17.5 79.0
    2017/6 2065.2 1478.1 1627.3 205.8 15.0 70.2
    下载: 导出CSV

    表  3  朱家店滑坡历年“阶跃”位移量

    Table  3.   "Step-like" displacement over the years of the Zhujiadian landslide

    类型 时间(年/月) “阶跃”位移量/mm
    实测值 2007/7 26.9
    2009/6 144.9
    2011/6 223.9
    2012/6 229.7
    2013/6 94.5
    2014/9 62.9
    修正值 2015/6 146.7
    预测值 2016/6 79.0
    2017/6 70.2
    下载: 导出CSV
  • Dong D M, Liang Y, Wang L Q, et al. 2017. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression—a case of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 38(12): 366-3669.
    Hu X L, Zhang M, Sun M J, et al. 2015. Deformation characteristics and failure mode of the Zhujiadian landslide in the Three Gorges Reservoir, China[J]. Bulletin of Engineering Geology and the Environment, 74(1): 1-12. doi: 10.1007/s10064-013-0552-x
    Lei D X, Yi W. 2018. Prediction and forecast of landslide displacement based on ARIMA model: case of Wangjiapo landslide in Three Gorges Reservoir area[J]. Yangtze River, 49 (21): 56-60, 83. http://d.old.wanfangdata.com.cn/Periodical/rmcj201821011
    Li C D, Tang H M, Hu X L, et al. 2009. Landslide prediction based on wavelet analysis and cusp catastrophe[J]. Journal of Earth Science, 20(6): 971. doi: 10.1007/s12583-009-0082-4
    Li J, Zhang Z J, Hiu R Q, et al. 2016. Prediction of landslide displacement based on ARIMA-MC model[J]. Computer Engineering and Applications, 52(7): 215-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgcyyy201607040
    Li S W, Li Y C. 2015. Landslide displacement prediction based on ARIMA model[J]. Journal of Chengdu University(Natural Science Edition), 34(4): 421-424. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201704016
    Ma J W. 2016. Rvolution characteristics of multiple physics-based parameters and data mining technology for progressive landslides[J]. Wuhan: China University of Geosciences(Wuhan).
    Ma J W, Tang H M, Liu X, et al. 2017. Establishment of a deformation forecasting model for a step-like landslide based on decision tree C5.0 and two-step cluster algorithms: a case study in the Three Gorges Reservoir area, China[J]. Landslides, 14(3): 1275-1281. doi: 10.1007/s10346-017-0804-0
    Miao F S, Wu Y P, Xie Y H, et al. 2017. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model[J]. Landslides, 15(3): 1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=04ecaca2e44c7cf99ebf484dc17fa242
    Miao F S, Wu Y P, Xie Y H, et al. 2016. Displacement prediction of baishuihe landslide based on multi algorithm optimization and SVR model[J]. Journal of Engineering Geology, 24(6): 1136-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201606016
    Tan F L, Hu X L, He C C, et al. 2018. Identifying the main control factors for different deformation stages of landslide[J]. Geotechnical and Geological Engineering, 36(1): 469-482. doi: 10.1007/s10706-017-0340-7
    Tan F L. 2018. Evaluation method for dynamic stability of landslide stabilizing pile system with different evolution modes[J]. Wuhan: China University of Geosciences(Wuhan).
    Xu F, Wang Y, Du J, et al. 2011. Study of displacement prediction model of landslide based on time series analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 30(4): 746-751.
    Yan H, Li S H, Wu L Z. 2019. Landslide displacement prediction based on multiple data-driven model methods[J]. Journal of Engineering Geology, 27(2): 459-465. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201902028
    Zhao H, Shao S H, Xie D P. 2004. Examination method for qutlier of analytical data[J]. Journal of Zhoukou Teachers College, 21(5): 70-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zksfgdzkxxxb200405021
    Zhou C, Yin K L, Cao Y, et al. 2016. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China[J]. Engineering Geology, 204 : 108-120. doi: 10.1016/j.enggeo.2016.02.009
    Zhu J X, Bao Y T, Li Z. 2018. Discussion on the method for testing and treating outliers[J]. University Chemistry, 33(8): 58-65. http://d.old.wanfangdata.com.cn/Periodical/dxhx201808012
    邓冬梅, 梁烨, 王亮清, 等. 2017.基于集合经验模态分解与支持向量机回归的位移预测方法:以三峡库区滑坡为例[J].岩土力学, 38(12): 3660-3669. http://d.old.wanfangdata.com.cn/Periodical/ytlx201712035
    雷德鑫, 易武. 2018.基于ARIMA时间序列模型的滑坡位移预测预报——以三峡库区王家坡滑坡为例[J].人民长江, 49 (21): 60-64, 87. http://www.cnki.com.cn/Article/CJFDTotal-RIVE201821011.htm
    李炯, 张志军, 牛瑞卿, 等. 2016.基于ARIMA-MC模型的滑坡位移预测[J].计算机工程与应用, 52(7): 215-221. doi: 10.3778/j.issn.1002-8331.1404-0187
    李首位, 李益陈. 2015.基于ARIMA模型的滑坡位移预测[J].成都大学学报(自然科学版), 34(4): 421-424. doi: 10.3969/j.issn.1004-5422.2015.04.026
    马俊伟. 2016.渐进式滑坡多场信息演化特征与数据挖掘研究[D].武汉: 中国地质大学(武汉). http://cdmd.cnki.com.cn/Article/CDMD-10491-1016312151.htm
    苗发盛, 吴益平, 谢媛华, 等. 2016.基于多算法参数优化与SVR模型的白水河滑坡位移预测[J].工程地质学报, 24(6): 1136-1144. doi: 10.13544/j.cnki.jeg.2016.06.013
    谭福林. 2018.基于不同演化模式的滑坡-抗滑桩体系动态稳定性评价方法研究[D].武汉: 中国地质大学(武汉). http://cdmd.cnki.com.cn/Article/CDMD-10491-1018817136.htm
    王玉荣. 2004. ARIMA模型在我国出口贸易预测中的应用[J].统计与决策, (4): 33-34. doi: 10.3969/j.issn.1002-6487.2004.04.019
    徐峰, 汪洋, 杜娟, 等. 2011.基于时间序列分析的滑坡位移预测模型研究[J].岩石力学与工程学报, 30(4): 746-751. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201104012
    鄢好, 李绍红, 吴礼舟. 2019.联合多种数据驱动建模方法的滑坡位移预测研究[J].工程地质学报, 27(2): 459-465. doi: 10.13544/j.cnki.jeg.2017-485
    赵辉, 邵素华, 谢东坡. 2004.分析数据中离群值的处理方法[J].周口师范学院学报, 21(5): 70-71. doi: 10.3969/j.issn.1671-9476.2004.05.021
    中华人民共和国行业标准编写组. 2008.数据的统计处理和解释正态样本离群值的判断和处理(GB/T 4883-2008)[S].北京: 中国标准出版社.
    朱嘉欣, 包雨恬, 黎朝. 2018.数据离群值的检验及处理方法讨论[J].大学化学, 33 (8): 58-65. http://d.old.wanfangdata.com.cn/Periodical/dxhx201808012
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  76
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-03
  • 修回日期:  2019-07-04
  • 发布日期:  2020-02-25

目录

    /

    返回文章
    返回