SHEAR MECHANICAL PROPERTIES OF DREDGED CORAL SANDS FROM SOUTH CHINA SEA, CHINA
-
摘要: 珊瑚砂作为一种特殊的生物碎屑沉积物,我国南海广泛分布,其具有多孔、非均质、非连续等工程特性,作为填岛的材料和工程建设的基础,吹填珊瑚砂的力学特性是珊瑚岛礁工程研究的关键科学问题。中国南海降雨量大,吹填珊瑚砂渗透性好,工程荷载高,含水性和高荷载对于吹填珊瑚砂剪切力学特性的影响非常显著。利用自主研制的土石混合体大型剪切力学试验机,采用中国南沙某岛礁吹填珊瑚砂,在级配和组分分析的基础上,研究不同密实度、含水量条件下高轴向荷载珊瑚砂的剪切力学特性,通过试验结果分析得出如下结论:(1)含水量增加导致吹填珊瑚砂抗剪强度减小,呈负相关关系;密实度增加引起抗剪强度增加,呈正相关关系;(2)含水量对吹填珊瑚砂内摩擦角影响显著,呈负相关关系,含水量大于10%,内摩擦角降低较小;密实度90%时,含水量大于5%,黏聚力降低较小;(3)密实度对吹填珊瑚砂的黏聚力影响规律不明显,密实度对内摩擦角影响较显著,当含水量大于5%时,随着密实度的增加内摩擦角显著增大;(4)在高荷载条件下,含水量和密实度对吹填珊瑚砂抗剪力学特性影响较为显著,含水量小、密实度大的吹填珊瑚砂抗剪特性最强,对于岛礁填岛工程设计及场地条件改性具有指导意义。Abstract: Coral sand, as a special bioclastic sediment, is widely distributed in the South China Sea. It has many engineering characteristics such as porous, heterogeneous and discontinuous. As the basis of island filling materials and engineering construction, the mechanical properties of the dredged coral sand are the key scientific issues in the research of coral island and reef engineering. The South China Sea has a large amount of rainfall. The dredged coral sand has good permeability and high engineering bearing capacity. The influence of water content and high load on the shear mechanical properties of the sand is very significant. Based on the analysis of gradation and composition, the conditions of different compactness and water content were studied by using a self-developed large-scale shear mechanical testing machine for soil rock mixture and an island reef in Nansha, China. The results show that:(1)The increase of water content leads to the decrease of shear strength, which has a negative correlation; the increase of compactness leads to the increase of shear strength, which has a positive correlation; (2)The influence of water content on the angle of internal friction is significant, showing a negative correlation. When the water content is greater than 10%, the angle of internal friction decreases slightly; when the density is 90%, the water content is greater than 5%, and the cohesion decreases slightly; (3)The influence of the compactness on the cohesion of the coral sand is not obvious, and the influence of the compactness on the angle of internal friction is significant, when the water content is greater than 5%, with the increase of the compactness internal friction angle increases significantly; (4)Under the high load, the influence of water content and compactness on the shear mechanical properties of sand is significant. The sand with small water content and large compactness has the strongest shear properties, which is of guiding significance for the design of the island filling project and the modification of site conditions.
-
表 1 珊瑚砂基本物理参数
Table 1. Basic physical parameters of the coral sand
d60
/mmd30
/mmd10
/mm比重
GsCu
(d60/d10)Cc
(d302/d60×d10)2.0 0.5 0.25 2.70 8 0.5 表 2 密实度80%不同含水量珊瑚砂C、φ值
Table 2. C and φ value of coral sand with different water contents when compactness is 80%
抗剪
指标0含水量
(干燥)5%
含水量10%
含水量15%
含水量C/MPa 0.361 0.316 0.474 0.331 φ/(°) 62.52 56.53 50.90 49.89 表 3 密实度90%不同含水量珊瑚砂C、φ值
Table 3. C and φ value of coral sand with different water contents when compactness is 90%
抗剪
指标0含水量
(干燥)5%
含水量10%
含水量15%
含水量C/MPa 0.391 0.316 0.301 0.30 φ/(°) 65.09 57.82 57.81 56.08 -
Airey D W, Fahey M. 1991. Cyclic response of calcareous soil from the north-west shlef of Australia[J]. Géotechnique, 41(1): 101-121. doi: 10.1680/geot.1991.41.1.101 Fahey M. 1988. The response of calcareous soils in static and cyclic triaxial test[C]//Proceedings of Internstional Conference on Calcareous Sediments. Perth: [s.n.]: 61-68. Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcarouss and with particle breakage[J]. Journal of Engineering Geology, 26(6): 1490-1498. https://www.sciencedirect.com/science/article/pii/S0013795213000835 Huo Z S, Fan J H, Wang Z J. 2015. Application of large-scale direct shear test in calcareous sand layer[J]. China Water Transport, 15(4): 294-295. Li J G, Kuang H. 2017. Direct shear mechanical characteristics of the calcarrous coral sand[J]. Soil Engineering and Foundation, 31(2): 226-230. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TGJC201702027.htm Liu C Q, Yang Z Q, Wang R. 1995. The present condition and development in studies of mechanical properties of calcareous slils[J]. Rock and Soil Mechanics, 16(4): 74-83. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX504.010.htm Liu Y, Lu T H. 2009. Large-scale simple shear tests of particle breakage of coarse-grained soil[J]. Journal of Hohai University(Natural Sciences), 37(2): 175-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hhdxxb200902011 Morrison M J, Mcintyre P D, Sauls D P. 1988. Laboratory test results for carbonate soils from offshore Africa[C]//Proceedings of International Conference on Calcareous Sediments. Perth: [s.n.]. Qian W. 2016. Laboratory tests of mechanical properties of coral sand samples from a coral reef[J]. Soil Engineering and Foundation, 30(4): 527-532. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgjc201604031 Shen J H, Wang R. 2010. Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 18 (S1): 26-32. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806012 Wang G J, Yang C H, Zhang C, et al. 2009. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 30(12): 3649-3654. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200912015 Wang L G, Zhang P, Li X L. 2015. Water content and compactness influence on waste disposal site rock shearing strength[J]. Journal of Liaoning Technical University(Natural Science), 34(6): 699-703. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201506009 Wang X Z, Wang X. 2017. Investigation of engineering characteristics of calcareous soils from fringing Reef[J]. Ocean Engineering, 134 : 77-86. doi: 10.1016/j.oceaneng.2017.02.019 Wang X Z, Wang X, Jin Z C, et al. 2016. Shear characteristics of calcareous gravelly soil[J]. Bulletin of Engineering Geology and the Environment, 76(2): 561-573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=37a2470c66b8a966ba58d4550fcdf8e6 Wang R, Wu W J. 2019. Exploration and research on engineering geological properties of coral reefs--Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27(1): 202-207. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201901022 Wang Z H, Zhou J, Zhao Z P, et al. 2013. Experimental study on strength and crushing behavior of coarse-grained soil[J]. Industrial Construction, 43 (8): 90-93, 14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyjz201308019 Xu X F, Wei H Z, Meng Q S, et al. 2013. Effect of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 35(4): 728-733. http://manu32.magtech.com.cn/Jwk_zgswyx_en/EN/abstract/abstract76.shtml Yu Y P, Lü Y R, Li F, et al. 2017. Experimental analyses of shearing mechanism of coral sand[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 18(1): 29-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jfjlgdxxb201701005 Zhang J M, Zhang L, Liu H, et al. 2008. Experimental research on shear behavior of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (S1): 3010-3015. http://d.old.wanfangdata.com.cn/Periodical/hbjzkjxyxb201804009 Zhang Z H, Shan J P, Cao M. 2017. Influence of moisture content on the calcareous sand strength parameters under direct shear conditions[J]. Soil Engineering and Foundation, 31(2): 244-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgjc201702031 Zhao G S, Zhou G Q, Zhu Q P, et al. 2008. Experimental research on the influence of particle crushing on direct shear strength of sand[J]. Journal of China University of Mining and Technology, 37(3): 291-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200803002 陈火东, 魏厚振, 孟庆山, 等. 2018.颗粒破碎对钙质砂的应力-应变及强度影响研究[J].工程地质学报, 26(6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519 霍珍生, 范建华, 汪正金. 2015.室内大型直剪实验在钙质砂地层的应用[J].中国水运, 15(4): 294-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsy-xby201504126 李金戈, 况辉. 2017.珊瑚碎屑钙质砂的抗剪特性[J].土工基础, 31(2): 226-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgjc201702026 刘崇权, 杨志强, 汪稔. 1995.钙质土力学性质研究现状与进展[J].岩土力学, 16(4): 74-83. http://www.cnki.com.cn/Article/CJFDTotal-YTLX504.010.htm 刘尧, 卢廷浩. 2009.粗粒土大型单剪颗粒破碎试验研究[J].河海大学学报(自然科学版), 37(2): 175-178. doi: 10.3876/j.issn.1000-1980.2009.02.011 钱炜. 2016.某岛礁珊瑚砂力学性质的室内试验研究[J].土工基础, 30(4): 527-532. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgjc201604031 沈建华, 汪稔. 2010.钙质砂的工程性质研究进展与展望[J].工程地质学报, 18 (S1): 26-32. http://www.gcdz.org/article/id/10112 王光进, 杨春和, 张超, 等. 2009.粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J].岩土力学, 30(12): 3649-3654. doi: 10.3969/j.issn.1000-7598.2009.12.015 王来贵, 张鹏, 李喜林. 2015.含水率及压实度对排土场岩土抗剪强度的影响[J].辽宁工程技术大学学报(自然科学版), 34(6): 699-703. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201506009 汪稔, 吴文娟. 2019.珊瑚礁岩土工程地质的探索与研究--从事珊瑚礁研究30a[J].工程地质学报, 27(1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008 王子寒, 周健, 赵振平, 等. 2013.粗粒土强度特性及颗粒破碎试验研究[J].工业建筑, 43 (8): 90-93, 14. http://d.old.wanfangdata.com.cn/Periodical/gyjz201308019 徐肖峰, 魏厚振, 孟庆山, 等. 2013.直剪剪切速率对粗粒土强度与变形特性的影响[J].岩土工程学报, 35(4): 728-733. http://d.old.wanfangdata.com.cn/Conference/7895680 佘殷鹏, 吕亚茹, 李峰, 等. 2017.珊瑚砂剪切特性试验分析[J].解放军理工大学学报(自然科学版), 18(1): 29-35. http://d.old.wanfangdata.com.cn/Periodical/jfjlgdxxb201701005 张家铭, 张凌, 刘慧, 等. 2008.钙质砂剪切特性试验研究[J].岩石力学与工程学报, 27 (S1): 3010-3015. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2008S1065.htm 张早辉, 单继鹏, 曹梦. 2017.直剪条件下含水率对钙质砂强度的影响[J].土工基础, 31(2): 244-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgjc201702031 赵光思, 周国庆, 朱锋盼, 等. 2008.颗粒破碎影响砂直剪强度的试验研究[J].中国矿业大学学报, 37 (3): 291-294. doi: 10.3321/j.issn:1000-1964.2008.03.002