留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松辽盆地晚白垩世陆表古温度定量重建

松辽盆地晚白垩世陆表古温度定量重建——以LD6⁃7井嫩江组一、二段为例[J]. 机械工程学报, 2020, 38(4): 759-770. doi: 10.14027/j.issn.1000-0550.2019.079
引用本文: 松辽盆地晚白垩世陆表古温度定量重建——以LD6⁃7井嫩江组一、二段为例[J]. 机械工程学报, 2020, 38(4): 759-770. doi: 10.14027/j.issn.1000-0550.2019.079
JianMing QIN, JiQuan CHEN, Yuan GAO, DangPeng XI, ChengShan WANG. Quantitative Paleotemperature Reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin: A case study of the LD6⁃7 Core[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 38(4): 759-770. doi: 10.14027/j.issn.1000-0550.2019.079
Citation: JianMing QIN, JiQuan CHEN, Yuan GAO, DangPeng XI, ChengShan WANG. Quantitative Paleotemperature Reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin: A case study of the LD6⁃7 Core[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 38(4): 759-770. doi: 10.14027/j.issn.1000-0550.2019.079

松辽盆地晚白垩世陆表古温度定量重建——以LD6⁃7井嫩江组一、二段为例

doi: 10.14027/j.issn.1000-0550.2019.079
基金项目: 

国家自然科学基金项目 41790450

中央高校基本科研业务费优秀教师基金项目 2652018119

中国地质大学(北京)大学生创新创业训练计划项目 2018AB004

详细信息
    作者简介:

    :秦健铭,男,1997年出生,硕士研究生,古气候学,E⁃mail: jmqin@cugb.edu.cn

    通讯作者:

    高远,男,副教授,E⁃mail: yuangao@cugb.edu.cn

  • 中图分类号: P532

Quantitative Paleotemperature Reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin: A case study of the LD6⁃7 Core

Funds: 

National Natural Science Foundation of China 41790450

Project of Excellent Teachers Fund for Fundamental Research Business Fees in Central Colleges and Universities 2652018119

Innovation and Entrepreneurship Training Program for Undergra duates of China University of Geosciences (Beijing) 2018AB004

  • 摘要: 松辽盆地嫩江组一、二段是形成于晚白垩世的湖相沉积,保留了丰富的陆地古气候信息。对松辽盆地LD6⁃7井嫩江组一、二段矿物学、地球化学分析及陆表古温度重建,其全岩矿物以黏土矿物含量最多(平均46.2%),石英含量次之(平均21.7%),斜长石和钾长石含量较低。多种风化指数显示嫩江组一、二段具有中等强度的化学风化作用。物源区、搬运和成岩过程对沉积物化学组成的影响分析结果显示:1)降水量较大,2)有一定强度的物理剥蚀,3)分选和沉积再循环作用较弱,4)成岩作用较弱,5)原岩为酸性岩。基于τNa⁃MAT转换方程,得到松辽盆地LD6⁃7井嫩江组一、二段沉积时期的陆表古温度为14.2 ℃,属于温带—亚热带气候,与前人研究结果一致。研究证明利用元素地球化学手段重建古温度的方法在松辽盆地嫩江组一、二段具有可行性,可为今后“深时”陆地古气候定量研究提供借鉴。

     

  • 图  松辽盆地简图

    Figure  1.  A brief geographic map of Songliao Basin

    Fig.1

    图  LD6⁃7井嫩江组一、二段岩性柱状图

    Figure  2.  Records of K2 n 1+2 in the LD6⁃7 core

    Fig.2

    图  LD6⁃7井嫩江组一、二段主量元素组成(%)

    Figure  3.  Major elemental composition (%) of K2 n 1+2 in the LD6⁃7 core

    Fig.3

    图  LD6⁃7井嫩江组一、二段微量元素组成(g/t)

    Figure  4.  Trace elemental composition (g/t) of K2 n 1+2 in the LD6⁃7 core (g/t)

    Fig.4

    图  LD6⁃7井嫩江组一、二段全岩矿物含量(%)

    Figure  5.  Bulk rock mineralogical composition (%) of K2 n 1+2 in the LD6⁃7 core (%)

    Fig.5

    图  嫩江组一、二段物源F1⁃F2图解(修改自Klovan et al.[41]

    Figure  6.  F1⁃F2 diagram for the source of K2 n 1+2 (modified from Klovan et al.[41] )

    Fig.6

    图  多种化学风化指数计算结果

    Figure  7.  Statistical results for multiple weathering indices

    Fig.7

    图  多种化学风化指数和CIA相关性

    Figure  8.  Correlations of the Chemical Index of Alteration (CIA) with other weathering indices

    Fig.8

    图  嫩江组一、二段分选作用和沉积再循环作用图解

    Figure  9.  Diagram for sorting and recycling of K2 n 1+2

    Fig.9

    表  1  LD6⁃7井嫩江组一、二段主量元素组成(%)

    Table 1

    下载: 导出CSV

    表  2  化学风化指数计算公式

    Table 2

    下载: 导出CSV
  • [1] 汪品先. 气候演变中的冰和碳[J]. 地学前缘,2002,9(1):85-93.

    Wang Pinxian. Ice and carbon in climate evolution[J]. Earth Science Frontiers, 2002, 9(1): 85-93.
    [2] Frakes L A, Francis J E, Syktus J I. Climate modes of the Phanerozoic[M]. Cambridge: Cambridge University Press, 1992.
    [3] Huber B T, Norris R D, MacLeod K G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous[J]. Geology, 2002, 30(2): 123-126.
    [4] Skelton P W, Spicer R A, Kelley S P, et al. The Cretaceous world[M]. Cambridge: Cambridge University Press, 2003.
    [5] 胡修棉. 白垩纪“温室”气候与海洋[J]. 中国地质,2004,31(4):442-448.

    Hu Xiumian. Greenhouse climate and ocean during the Cretaceous[J]. Geology in China, 2004, 31(4): 442-448.
    [6] Friedrich O, Norris R D, Erbacher J. Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth's temperature and carbon cycle[J]. Geology, 2012, 40(2): 107-110.
    [7] Barron E J. A warm, equable Cretaceous: The nature of the problem[J]. Earth-Science Reviews, 1983, 19(4): 305-338.
    [8] Bice K L, Norris R D. Possible atmospheric CO2 extremes of the Middle Cretaceous (Late Albian–Turonian)[J]. Paleoceanography, 2002, 17(4): 1070.
    [9] Takashima R, Nishi H, Huber B T, et al. Greenhouse world and the Mesozoic Ocean[J]. Oceanography, 2006, 19(4): 82-92.
    [10] Hay W W. Evolving ideas about the Cretaceous climate and ocean circulation[J]. Cretaceous Research, 2008, 29(5/6): 725-753.
    [11] Chen P J, Chang Z L. Nonmarine Cretaceous stratigraphy of eastern China[J]. Cretaceous Research, 1994, 15(3): 245-257.
    [12] Sha J G. Cretaceous stratigraphy of Northeast China: Non-marine and marine correlation[J]. Cretaceous Research, 2007, 28(2): 146-170.
    [13] Wang C S, Feng Z Q, Zhang L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
    [14] 侯启军,冯志强,冯子辉,等. 松辽盆地陆相石油地质学[M]. 北京:石油工业出版社,2009.

    Hou Qijun, Feng Zhiqiang, Feng Zihui, et al. Terrestrial petroleum geology of Songliao Basin[M]. Beijing: Petroleum Industry Press, 2009.
    [15] 高瑞祺,赵传本,乔秀云,等. 松辽盆地白垩纪石油地层孢粉学[M]. 北京:地质出版社,1999.

    Gao Ruiqi, Zhao Chuanben, Qiao Xiuyun, et al. Cretaceous oil strata palynology from Songliao Basin[M]. Beijing: Geological Publishing House, 1999.
    [16] 陈积权,高远,秦健铭,等. 松辽盆地东缘嫩江组一二段黏土矿物和主量元素地球化学特征及其古气候意义[J]. 中国煤炭地质,2017,29(8):17-24.

    Chen Jiquan, Gao Yuan, Qin Jianming, et al. Clay mineral and major element geochemical features and their paleoclimate significance in Nenjiang Formation 1st and 2nd members, eastern margin of Songliao Basin[J]. Coal Geology of China, 2017, 29(8): 17-24.
    [17] Ghosh P, Adkins J, Affek H, et al. 13C–18O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(6): 1439-1456.
    [18] Dennis K J, Cochran J K, Landman N H, et al. The climate of the Late Cretaceous: New insights from the application of the carbonate clumped isotope thermometer to western Interior Seaway macrofossil[J]. Earth and Planetary Science Letters, 2013, 362: 51-65.
    [19] Came R E, Brand U, Affek H P. Clumped isotope signatures in modern brachiopod carbonate[J]. Chemical Geology, 2014, 377: 20-30.
    [20] Robinson S A, Ruhl M, Astley D L, et al. Early Jurassic North Atlantic sea‐surface temperatures from TEX86 palaeothermometry[J]. Sedimentology, 2017, 64(1): 215-230.
    [21] Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1/2): 265-274.
    [22] Yang J H, Cawood P A, Du Y S, et al. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. Geological Society of America Bulletin, 2016, 128(5/6): 739-751.
    [23] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.
    [24] 孟凡超,刘嘉麒,崔岩,等. 中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约[J]. 岩石学报,2014,30(12):3569-3586.

    Meng Fanchao, Liu Jiaqi, Cui Yan, et al. Mesozoic tectonic regimes transition in the Northeast China: Constriants from temporal-spatial distribution and associations of volcanic rocks[J]. Acta Petrologica Sinica, 2014, 30(12): 3569-3586.
    [25] Feng Z Q, Jia C Z, Xie X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, Northeast China[J]. Basin Research, 2010, 22(1): 79-95.
    [26] 莫午零,吴朝东,张顺,等. 松辽盆地北部上白垩统嫩江组物源及古流向分析[J]. 石油实验地质,2012,34(1):40-46.

    Mo Wuling, Wu Chaodong, Zhang Shun, et al. Provenance and palaeocurrent direction of Upper Cretaceous Nenjiang Formation in northern Songliao Basin[J]. Petroleum Geology & Experiment, 2012, 34(1): 40-46.
    [27] 王东坡,刘招君,刘立. 松辽盆地演化与海平面升降[M]. 北京:地质出版社,1994.

    Wang Dongpo, Liu Zhaojun, Liu Li. Evolution and sea level elevation of Songliao Basin[M]. Beijing: Geological Publishing House, 1994.
    [28] Feng Z Q, Wang C S, Graham S, et al. Continental scientific drilling project of Cretaceous Songliao Basin: Scientific objectives and drilling technology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 6-16.
    [29] Gao Y, Xi D P, Qin Z H, et al. Clay mineralogy of the first and second members of the Nenjiang Formation, Songliao Basin: Implications for paleoenvironment in the Late Cretaceous[J]. Science China Earth Sciences, 2018, 61(3): 327-338.
    [30] Riebe C S, Kirchner J W, Finkel R C. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4411-4427.
    [31] Dixon J L, Hartshorn A S, Heimsath A M, et al. Chemical weathering response to tectonic forcing: A soils perspective from the San Gabriel Mountains, California[J]. Earth and Planetary Science Letters, 2012, 323-324: 40-49.
    [32] 杨江海,马严. 源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.

    Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processes[J]. Earth Science, 2017, 42(11): 1910-1921.
    [33] Rasmussen C, Brantley S, Richter D D, et al. Strong climate and tectonic control on plagioclase weathering in granitic terrain[J]. Earth and Planetary Science Letters, 2011, 301(3/4): 521-530.
    [34] Riebe C S, Kirchner J W, Granger D E, et al. Strong tectonic and weak climatic control of long-term chemical weathering rates[J]. Geology, 2001, 29(6): 511-514.
    [35] Riebe C S, Kirchner J W, Finkel R C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 547-562.
    [36] Ferrier K L, Kirchner J W. Effects of physical erosion on chemical denudation rates: A numerical modeling study of soil-mantled hillslopes[J]. Earth and Planetary Science Letters, 2008, 272(3/4): 591-599.
    [37] Gabet E J, Mudd S M. A theoretical model coupling chemical weathering rates with denudation rates[J]. Geology, 2009, 37(2): 151-154.
    [38] 蒋浩, 徐志方, 赵童, 等. 青藏高原流域岩石风化速率及其控制机制:以贡嘎山地区典型地质背景小流域研究为例[J]. 第四纪研究,2018,38(1):278-286.

    Jiang Hao, Xu Zhifang, Zhao Tong, et a1. The weathering rates and controlling factors of the Tibetan Plateau: A case study of small catchments of typical lithology in Gongga Mountainous area[J]. Quaternary Sciences,2018, 38(1): 278-286.
    [39] West A J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks[J]. Geology, 2012, 40(9): 811-814.
    [40] 闫晶晶, 席党鹏, 于涛, 等. 松辽盆地青山口地区嫩江组下部生物地层及环境变化[J]. 地层学杂志, 2007, 31(3): 296-302.

    Yan Jingjing, Xi Dangpeng, Yu Tao, et al. Biostratigraphy and paleoenvironmental change of the lower Nenjiang Formation in the Qingshankou area, Songliao Basin[J]. Journal of Stratigraphy, 2007, 31(3): 296-302.
    [41] Klovan J E, Billings G K. Classification of geological samples by discriminant-function analysis[J]. Bulletin of Canadian Petroleum Geology, 1967, 15(3): 313-330.
    [42] Song Y, Ren J Y, Stepashko A A, et al. Post-rift geodynamics of the Songliao Basin, NE China: Origin and significance of T11 (Coniacian) unconformity[J]. Tectonophysics, 2014, 634: 1-18.
    [43] Wilkinson B H. Humans as geologic agents: A deep-time perspective[J]. Geology, 2005, 33(3): 161-164.
    [44] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [45] Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
    [46] Parker A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504.
    [47] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
    [48] Babechuk M G, Widdowson M, Kamber B S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India[J]. Chemical Geology, 2014, 363: 56-75.
    [49] Yang S, Ding F, Ding Z. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan[J]. Geochimica et Cosmochimica Acta, 2006, 70(7):1695-1709.
    [50] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.
    [51] Nesbitt H W, Wilson R E. Recent chemical weathering of Basalts[J]. American Journal of Science, 1992, 292(10): 740-777.
    [52] Maynard J B. Chemistry of modern soils as a guide to interpreting Precambrian Paleosols[J]. The Journal of Geology, 1993, 100(3): 279-289.
    [53] Nordt L C, Driese S D. New weathering index improves paleorainfall estimates from Vertisols[J]. Geology, 2010, 38(5): 407-410.
    [54] Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322.
    [55] Gao Y, Wang C S, Liu Z F, et al. Diagenetic and paleoenvironmental controls on Late Cretaceous clay minerals in the Songliao Basin, Northeast China[J]. Clays and Clay Minerals, 2015, 63(6): 469-484.
    [56] 孙平昌,刘招君,李宝毅,等. 桦甸盆地桦甸组油页岩段地球化学特征及地质意义[J]. 吉林大学学报(地球科学版),2012,42(4):948-960.

    Sun Pingchang, Liu Zhaojun, Li Baoyi, et al. Geochemical characteristics and their geological implications of oil shale member of Huadian Formation, Huadian Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(4): 948-960.
    [57] Bouchez J, Gaillardet J, France-Lanord C, et al. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03008.
    [58] 迟清华,鄢明才. 应用地球化学元素丰度数据手册[M]. 北京:地质出版社,2007.

    Chi Qinghua, Yan Mingcai. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007.
    [59] Garzanti E, Padoan M, Andò S, et al. Weathering and relative durability of detrital minerals in Equatorial Climate: Sand petrology and geochemistry in the East African Rift[J]. The Journal of Geology, 2013, 121(6): 547-580.
    [60] Garzanti E, Padoan M, Setti M, et al. Provenance versus weathering control on the composition of tropical river mud (southern Africa)[J]. Chemical Geology, 2014, 366: 61-74.
    [61] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Paper of the Geological Society of America, 1993, 284:21-40.
    [62] 邓硕,刘招君,孙平昌. 松辽盆地东南隆起区上白垩统嫩江组泥页岩段地球化学特征与物源分析[J]. 世界地质,2016,35(1):108-122.

    Deng Shuo, Liu Zhaojun, Sun Pingchang. Geochemical characteristics and implications for provenance of shale from Upper Cretaceous Nenjiang Formation of southeastern uplifted area in Songliao Basin[J]. Global Geology, 2016, 35(1): 108-122.
    [63] Zakharov Y D, Boriskina N G, Ignatyev A V, et al. Palaeotemperature curve for the Late Cretaceous of the northwestern circum-Pacific[J]. Cretaceous Research, 1999, 20(6): 685-697.
    [64] Zakharov Y D, Shigeta Y, Popov A M, et al. Cretaceous climatic oscillations in the Bering area (Alaska and Koryak Upland): Isotopic and palaeontological evidence[J]. Sedimentary Geology, 2011, 235(1/2): 122-131.
    [65] Spicer R A, Herman A B. The Late Cretaceous environment of the Arctic: A quantitative reassessment based on plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295(3/4): 423-442.
    [66] Wang C S, Scott R W, Wan X Q, et al. Late Cretaceous climate changes recorded in eastern Asian lacustrine deposits and North American Epieric sea strata[J]. Earth-Science Reviews, 2013, 126: 275-299.
    [67] Zhang L M, Wang C S, Cao K, et al. High elevation of Jiaolai Basin during the Late Cretaceous: Implication for the coastal mountains along the East Asian margin[J]. Earth and Planetary Science Letters, 2016, 456: 112-123.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  126
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-24
  • 发布日期:  2020-08-10

目录

    /

    返回文章
    返回