留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型同步开关磁阻电机性能分析与结构优化

冬雷 冉茂莹 邵立伟 高孟祺 于坤洋

冬雷, 冉茂莹, 邵立伟, 高孟祺, 于坤洋. 新型同步开关磁阻电机性能分析与结构优化[J]. 机械工程学报, 2022, 42(7): 741-748. doi: 10.15918/j.tbit1001-0645.2021.172
引用本文: 冬雷, 冉茂莹, 邵立伟, 高孟祺, 于坤洋. 新型同步开关磁阻电机性能分析与结构优化[J]. 机械工程学报, 2022, 42(7): 741-748. doi: 10.15918/j.tbit1001-0645.2021.172
DONG Lei, RAN Maoying, SHAO Liwei, GAO Mengqi, YU Kunyang. Performance Analysis and Structure Optimization of Synchronous Switched Reluctance Motor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 42(7): 741-748. doi: 10.15918/j.tbit1001-0645.2021.172
Citation: DONG Lei, RAN Maoying, SHAO Liwei, GAO Mengqi, YU Kunyang. Performance Analysis and Structure Optimization of Synchronous Switched Reluctance Motor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 42(7): 741-748. doi: 10.15918/j.tbit1001-0645.2021.172

新型同步开关磁阻电机性能分析与结构优化

doi: 10.15918/j.tbit1001-0645.2021.172
详细信息
    作者简介:

    冬雷(1967—),男,副教授,E-mail: Correspondent_dong@163.com

  • 中图分类号: TP211

Performance Analysis and Structure Optimization of Synchronous Switched Reluctance Motor

  • 摘要: 为解决同步磁阻电机转子结构复杂、机械强度差、难以应用于高速领域的缺点,提出了一种新型同步开关磁阻电机(synchronous switched reluctance motor,SSRM). 该电机结合了开关磁阻电机与同步磁阻电机的优势,电机转子冲片制作工艺简单、可靠性强、适用于高速领域,电机的凸极率高,转矩输出能力强. 在对新型SSRM电磁设计的基础上利用正交法对该电机参数进行优化,选取转矩均值、转矩脉动以及电机效率作为优化性能指标. 通过有限元仿真和实验验证了优化后的SSRM具有转矩脉动低、效率高的特性.

     

  • 图  同步开关磁阻电机转子结构

    Figure  1.  Rotor structure of synchronous switched reluctance motor

    图  SSRM和SynRM电感变化

    Figure  2.  SSRM and SynRM inductance change

    图  SSRM和SynRM凸极比

    Figure  3.  Salient pole ratio of SSRM and SynRM

    图  待优化电机结构

    Figure  4.  Rotor optimization parameters

    图  气隙磁密谐波分析

    Figure  5.  Harmonic analysis of air gap magnetic density

    图  转矩特性随转子不均匀度变化曲线

    Figure  6.  Variation curve of torque characteristic with rotor unevenness

    图  SSRM负载磁密图

    Figure  7.  SSRM load magnetic density map

    图  SSRM磁力线分布图

    Figure  8.  SSRM magnetic field line distribution map

    图  优化前后SSRM转矩性能仿真曲线

    Figure  9.  Simulation curve of SSRM torque performance before and after optimization

    图  10  SSRM控制实验

    Figure  10.  SSRM control experiment

    图  11  SSRM转速实验波形

    Figure  11.  SSRM speed experiment waveform

    图  12  SSRM三相电流实验波形

    Figure  12.  SSRM three-phase current experimental waveform

    表  1  同步开关磁阻电机样机参数

    Table  1.   The parameters of prototype synchronous switch reluctance motor AC machine

    参 数数 值
    定子外径D1/mm155
    定子内径D2/mm98
    转子外径Da/mm97.4
    转子轭厚hcr/mm18
    转子极宽bpr/mm30
    第一气隙g /mm0.3
    轴径/mm27
    最大不均匀度gmax /mm0
    下载: 导出CSV

    表  2  L16(43)正交表

    Table  2.   L16(43) orthogonal table

    试验次数bprhcrggmax转矩均值/(N·m)转矩脉动/%电机效率/%
    1111115.021971.6695.0883
    2122213.479330.9294.8499
    3133312.257823.2994.5553
    4144411.256616.9994.2383
    5212312.693521.3294.6550
    6221412.311423.7594.5162
    7234114.000961.9894.9403
    8243213.169329.8994.7878
    9313411.798118.0094.4058
    10324312.098417.8094.5237
    11331213.922530.2794.9143
    12342114.730870.8795.0358
    13414212.971025.5794.7414
    14423114.408567.0094.9865
    15432412.171819.8994.4891
    16441313.099018.4094.7232
    下载: 导出CSV

    表  3  SSRM优化参数以及水平值选取

    Table  3.   SSRM optimization parameters and level value selection

    参 数水平值
    1234
    转子极宽bpr/mm29.43030.631.2
    转子轭厚hcr/mm17181920
    最小第一气隙g/mm0.20.250.30.35
    最大不均匀度gmax/mm0.320.991.662.33
    下载: 导出CSV

    表  4  均值分析

    Table  4.   Analysis of means

    优化参数水平值转矩均值/(N·m)转矩脉动/%电机效率值/%
    转子极宽bpr/mm113.00235.77595.0883
    213.04534.26094.8499
    313.14034.12594.5553
    413.16232.61894.2383
    转子轭厚hcr/mm113.12034.13394.6550
    213.07434.83394.5162
    313.09033.85894.9403
    413.06433.95594.7878
    第一气隙g/mm113.58735.89394.4058
    213.26935.72594.5237
    312.90934.52594.9143
    412.58330.63595.0358
    最大不均匀度gmax/mm114.53967.96394.7414
    213.38829.03394.9865
    312.53720.10094.4891
    411.88419.68394.7232
    下载: 导出CSV

    表  5  转矩均值方差分析

    Table  5.   Torque mean variance analysis

    参数转矩均值方差权重
    转子极宽bpr/mm0.004330.38178
    转子轭厚hcr/mm0.000450.03946
    第一气隙g/mm0.1421412.54076
    最大不均匀度gmax/mm0.9864887.038
    总计1.13339100
    下载: 导出CSV

    表  6  转矩脉动方差分析

    Table  6.   Torque ripple variance analysis

    参数转矩脉动方差权重
    转子极宽bpr/mm1.248510.31217
    转子轭厚hcr/mm0.145450.03637
    第一气隙g/mm4.501231.12548
    最大不均匀度gmax/mm394.0442998.52598
    总计399.93947100
    下载: 导出CSV

    表  7  电机效率方差分析

    Table  7.   Motor efficiency variance analysis

    参数效率值方差权重
    转子极宽bpr/mm0.000390.68285
    转子轭厚hcr/mm0.000130.22803
    第一气隙g/mm0.0056810.01359
    最大不均匀度gmax/mm0.0505389.07553
    总计0.05673100
    下载: 导出CSV

    表  8  优化前后电机性能指标对比

    Table  8.   Comparison of motor performance indicators before and after optimization

    对比项转矩均值/(N·m)转矩脉动/%效率/%
    优化前15.2484100.0994.6235
    优化后13.028616.5594.8571
    下载: 导出CSV
  • [1] WANG K, ZHU Z Q, OMBACH G, et al. Torque ripple reduction of synchronous reluctance machines: optimal slot/pole and flux-barrier layer number combinations[J]. COMPEL International Journal of Computations and Mathematics in Electrical, 2013, 34(1):1 − 8.
    [2] LEE J K, JUNG D H, LIM J, et al. A study on the synchronous reluctance motor design for high torque by using RSM[J]. IEEE Transactions on Magnetics, 2018(99):1 − 5.
    [3] BIANCHI N, BOLOGNANI S, BON D, et al. Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and PM-assisted synchronous reluctance motors[J]. IEEE Transactions on Industry Applications, 2009, 45(3):921 − 928. doi: 10.1109/TIA.2009.2018960
    [4] HOWARD E. Flux barrier and skew design optimization of reluctance synchronous machines[C]//Proceedings of International Conference on Electrical Machines - ICEM. [S. l. ]: IEEE, 2014.
    [5] BIANCHI N, DEGANO M, FORNASIERO E. Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors[C]//Proceedings of Energy Conversion Congress and Exposition (ECCE). [S. l. ]: IEEE, 2013.
    [6] 王磊, 姜瑞. 电压比例缩放谐波注入永磁同步电机高速驱动方法[J]. 北京理工大学学报, 2018, 38(1):26 − 32.

    WANG Lei, JIANG Rui. Voltage scaling harmonic injection permanent magnet synchronous motor high-speed drive method[J]. Transactions of Beijing Institute of Technology, 2018, 38(1):26 − 32. (in Chinese)
    [7] LIU X, PAN Z P, ZHU Q. Analysis of average torque in switched reluctance motor with unipolar and bipolar excitations based on an improved Fourier series model[C]//Proceedings of IEEE Vehicle Power and Propulsion Conference. Lille: [s. n.], 2010.
    [8] 沈建新, 蔡顺, 郝鹤, 等. 同步磁阻电机分析与设计(连载之四)绕组形式的分析与选择[J]. 微电机, 2016(11):93 − 97.

    SHEN Jianxin, CAI Shun, HAO He, et al. Analysis and design of synchronous reluctance motor (part 4) analysis and selection of winding forms[J]. Micro Motors, 2016(11):93 − 97. (in Chinese)
    [9] 黄万友, 王广灿, 于明进, 等. 基于田口鲁棒优化的电动汽车驱动控制策略研究[J]. 北京理工大学学报, 2019, 39(5):497 − 501.

    HUANG Wanyou, WANG Guangcan, YU Mingjin, et al. Research on electric vehicle drive control strategy based on taguchi robust optimization[J]. Transactions of Beijing Institute of Technology, 2019, 39(5):497 − 501. (in Chinese)
    [10] GONG Y , ZHAO S , LUO S . Design and optimization of switched reluctance motor by Taguchi method[C]// Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). [S. l. ]: IEEE, 2018: 1876 − 1880.
    [11] SIADATAN A, ROOHISANKESTANI M, FARHANGIAN S. Design and simulation of a new switched reluctance motor with changes in the shape of stator and rotor in order to reduce torque ripple and comparison with the conventional motor[C]//Proceedings of 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Amalfi, Italy: [s. n. ], 2018: 353 − 358.
    [12] 韩爱国, 苑昭, 郑青星, 等. 正交法在永磁同步电机优化设计中的应用[J]. 汽车实用技术, 2019, 285(6):48 − 52.

    HAN Aiguo, YUAN Zhao, ZHENG Qingxing, et al. Application of Taguchi method in optimal design of permanent magnet synchronous motor[J]. Automobile Practical Technology, 2019, 285(6):48 − 52. (in Chinese)
    [13] SI J, ZHAO S, FENG H, et al. Multi-objective optimization of surface-mounted and interior permanent magnet synchronous motor based on Taguchi method and response surface method[J]. Chinese Journal of Electrical Engineering, 2018, 4(1):67 − 73. doi: 10.23919/CJEE.2018.8327373
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  83
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 录用日期:  2021-06-21
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回