Performance Analysis and Structure Optimization of Synchronous Switched Reluctance Motor
-
摘要: 为解决同步磁阻电机转子结构复杂、机械强度差、难以应用于高速领域的缺点,提出了一种新型同步开关磁阻电机(synchronous switched reluctance motor,SSRM). 该电机结合了开关磁阻电机与同步磁阻电机的优势,电机转子冲片制作工艺简单、可靠性强、适用于高速领域,电机的凸极率高,转矩输出能力强. 在对新型SSRM电磁设计的基础上利用正交法对该电机参数进行优化,选取转矩均值、转矩脉动以及电机效率作为优化性能指标. 通过有限元仿真和实验验证了优化后的SSRM具有转矩脉动低、效率高的特性.Abstract: In order to solve the problem of complex rotor structure, deficient mechanical strength, and difficulty in high-speed applications of synchronous reluctance motor, a new type of synchronous switched reluctance motor (SSRM) was proposed. Taking the both advantages of switched reluctance motor and a synchronous reluctance motor, the new motor rotor was designed with several excellences including simple manufacturing process for punching sheet, strong reliability, suitable for high-speed fields, high salient pole rate and strong torque output capability. Based on the electromagnetic design of the new SSRM, the parameters of the motor were optimized by the orthogonal method, taking the average torque, torque ripple and motor efficiency as the optimized performance indicators. The finite element simulation and experiment results show that the optimized SSRM possesses the characteristics of low torque ripple and high efficiency.
-
表 1 同步开关磁阻电机样机参数
Table 1. The parameters of prototype synchronous switch reluctance motor AC machine
参 数 数 值 定子外径D1/mm 155 定子内径D2/mm 98 转子外径Da/mm 97.4 转子轭厚hcr/mm 18 转子极宽bpr/mm 30 第一气隙g /mm 0.3 轴径/mm 27 最大不均匀度gmax /mm 0 表 2 L16(43)正交表
Table 2. L16(43) orthogonal table
试验次数 bpr hcr g gmax 转矩均值/(N·m) 转矩脉动/% 电机效率/% 1 1 1 1 1 15.0219 71.66 95.0883 2 1 2 2 2 13.4793 30.92 94.8499 3 1 3 3 3 12.2578 23.29 94.5553 4 1 4 4 4 11.2566 16.99 94.2383 5 2 1 2 3 12.6935 21.32 94.6550 6 2 2 1 4 12.3114 23.75 94.5162 7 2 3 4 1 14.0009 61.98 94.9403 8 2 4 3 2 13.1693 29.89 94.7878 9 3 1 3 4 11.7981 18.00 94.4058 10 3 2 4 3 12.0984 17.80 94.5237 11 3 3 1 2 13.9225 30.27 94.9143 12 3 4 2 1 14.7308 70.87 95.0358 13 4 1 4 2 12.9710 25.57 94.7414 14 4 2 3 1 14.4085 67.00 94.9865 15 4 3 2 4 12.1718 19.89 94.4891 16 4 4 1 3 13.0990 18.40 94.7232 表 3 SSRM优化参数以及水平值选取
Table 3. SSRM optimization parameters and level value selection
参 数 水平值 1 2 3 4 转子极宽bpr/mm 29.4 30 30.6 31.2 转子轭厚hcr/mm 17 18 19 20 最小第一气隙g/mm 0.2 0.25 0.3 0.35 最大不均匀度gmax/mm 0.32 0.99 1.66 2.33 表 4 均值分析
Table 4. Analysis of means
优化参数 水平值 转矩均值/(N·m) 转矩脉动/% 电机效率值/% 转子极宽bpr/mm 1 13.002 35.775 95.0883 2 13.045 34.260 94.8499 3 13.140 34.125 94.5553 4 13.162 32.618 94.2383 转子轭厚hcr/mm 1 13.120 34.133 94.6550 2 13.074 34.833 94.5162 3 13.090 33.858 94.9403 4 13.064 33.955 94.7878 第一气隙g/mm 1 13.587 35.893 94.4058 2 13.269 35.725 94.5237 3 12.909 34.525 94.9143 4 12.583 30.635 95.0358 最大不均匀度gmax/mm 1 14.539 67.963 94.7414 2 13.388 29.033 94.9865 3 12.537 20.100 94.4891 4 11.884 19.683 94.7232 表 5 转矩均值方差分析
Table 5. Torque mean variance analysis
参数 转矩均值方差 权重 转子极宽bpr/mm 0.00433 0.38178 转子轭厚hcr/mm 0.00045 0.03946 第一气隙g/mm 0.14214 12.54076 最大不均匀度gmax/mm 0.98648 87.038 总计 1.13339 100 表 6 转矩脉动方差分析
Table 6. Torque ripple variance analysis
参数 转矩脉动方差 权重 转子极宽bpr/mm 1.24851 0.31217 转子轭厚hcr/mm 0.14545 0.03637 第一气隙g/mm 4.50123 1.12548 最大不均匀度gmax/mm 394.04429 98.52598 总计 399.93947 100 表 7 电机效率方差分析
Table 7. Motor efficiency variance analysis
参数 效率值方差 权重 转子极宽bpr/mm 0.00039 0.68285 转子轭厚hcr/mm 0.00013 0.22803 第一气隙g/mm 0.00568 10.01359 最大不均匀度gmax/mm 0.05053 89.07553 总计 0.05673 100 表 8 优化前后电机性能指标对比
Table 8. Comparison of motor performance indicators before and after optimization
对比项 转矩均值/(N·m) 转矩脉动/% 效率/% 优化前 15.2484 100.09 94.6235 优化后 13.0286 16.55 94.8571 -
[1] WANG K, ZHU Z Q, OMBACH G, et al. Torque ripple reduction of synchronous reluctance machines: optimal slot/pole and flux-barrier layer number combinations[J]. COMPEL International Journal of Computations and Mathematics in Electrical, 2013, 34(1):1 − 8. [2] LEE J K, JUNG D H, LIM J, et al. A study on the synchronous reluctance motor design for high torque by using RSM[J]. IEEE Transactions on Magnetics, 2018(99):1 − 5. [3] BIANCHI N, BOLOGNANI S, BON D, et al. Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and PM-assisted synchronous reluctance motors[J]. IEEE Transactions on Industry Applications, 2009, 45(3):921 − 928. doi: 10.1109/TIA.2009.2018960 [4] HOWARD E. Flux barrier and skew design optimization of reluctance synchronous machines[C]//Proceedings of International Conference on Electrical Machines - ICEM. [S. l. ]: IEEE, 2014. [5] BIANCHI N, DEGANO M, FORNASIERO E. Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors[C]//Proceedings of Energy Conversion Congress and Exposition (ECCE). [S. l. ]: IEEE, 2013. [6] 王磊, 姜瑞. 电压比例缩放谐波注入永磁同步电机高速驱动方法[J]. 北京理工大学学报, 2018, 38(1):26 − 32.WANG Lei, JIANG Rui. Voltage scaling harmonic injection permanent magnet synchronous motor high-speed drive method[J]. Transactions of Beijing Institute of Technology, 2018, 38(1):26 − 32. (in Chinese) [7] LIU X, PAN Z P, ZHU Q. Analysis of average torque in switched reluctance motor with unipolar and bipolar excitations based on an improved Fourier series model[C]//Proceedings of IEEE Vehicle Power and Propulsion Conference. Lille: [s. n.], 2010. [8] 沈建新, 蔡顺, 郝鹤, 等. 同步磁阻电机分析与设计(连载之四)绕组形式的分析与选择[J]. 微电机, 2016(11):93 − 97.SHEN Jianxin, CAI Shun, HAO He, et al. Analysis and design of synchronous reluctance motor (part 4) analysis and selection of winding forms[J]. Micro Motors, 2016(11):93 − 97. (in Chinese) [9] 黄万友, 王广灿, 于明进, 等. 基于田口鲁棒优化的电动汽车驱动控制策略研究[J]. 北京理工大学学报, 2019, 39(5):497 − 501.HUANG Wanyou, WANG Guangcan, YU Mingjin, et al. Research on electric vehicle drive control strategy based on taguchi robust optimization[J]. Transactions of Beijing Institute of Technology, 2019, 39(5):497 − 501. (in Chinese) [10] GONG Y , ZHAO S , LUO S . Design and optimization of switched reluctance motor by Taguchi method[C]// Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). [S. l. ]: IEEE, 2018: 1876 − 1880. [11] SIADATAN A, ROOHISANKESTANI M, FARHANGIAN S. Design and simulation of a new switched reluctance motor with changes in the shape of stator and rotor in order to reduce torque ripple and comparison with the conventional motor[C]//Proceedings of 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Amalfi, Italy: [s. n. ], 2018: 353 − 358. [12] 韩爱国, 苑昭, 郑青星, 等. 正交法在永磁同步电机优化设计中的应用[J]. 汽车实用技术, 2019, 285(6):48 − 52.HAN Aiguo, YUAN Zhao, ZHENG Qingxing, et al. Application of Taguchi method in optimal design of permanent magnet synchronous motor[J]. Automobile Practical Technology, 2019, 285(6):48 − 52. (in Chinese) [13] SI J, ZHAO S, FENG H, et al. Multi-objective optimization of surface-mounted and interior permanent magnet synchronous motor based on Taguchi method and response surface method[J]. Chinese Journal of Electrical Engineering, 2018, 4(1):67 − 73. doi: 10.23919/CJEE.2018.8327373