Influence of Dual Stealth Aircraft Coherent Jamming on Monopulse Radar and Impact Effectiveness Study
-
摘要: 针对当前关于双隐身飞机编队相干干扰对单脉冲雷达具体影响分析不足及误差有效性缺乏合理评价的问题,考虑双机回波相位差的随机性特点,建立了双隐身飞机相干干扰模型和角度误差评价模型. 设定双机突防运动场景,提取双机动态RCS,推导回波作用下的双机相干干扰引起的随机性角度误差计算式,求解随机性角度误差的一阶数字特征,并根据脱靶距离建立了角度误差有效性影响评价准则,解算角度误差的有效影响概率. 仿真表明:双隐身飞机相干干扰产生的角度误差均值较大,随机起伏性较弱,干扰效果较好,且误差对雷达影响有效概率较大,保证了编队突防安全性.Abstract: Due to the insufficient analysis on the specific impact of dual stealth aircraft formation self-defense coherent jamming on monopulse radar and the lack of rational evaluation to error effectiveness, considering the random characteristics of the phase difference between the dual aircraft echoes, a dual stealth aircraft coherent jamming model and an angle error evaluation model were established. Setting the track of dual aircraft and extracting the dynamic RCS of dual aircraft, a calculation formula was deduced for the random angle error caused by the dual aircraft coherent jamming under the echo. And then several processes were carried out including solving the first order digital characteristics of random angle errors, establishing the angle error validity evaluation criterion according to the miss distance, and calculating the validity probability of angle error. Simulation results show that the angle error caused by the dual stealth aircraft coherent jamming is relatively larger and the random fluctuation is weak. The stable jamming effect and large error validity probability to radar can insure the security of formation penetration.
-
表 1 飞机巡航参数设置
Table 1. Aircraft navigation parameter setting
机身参数 数据 巡航速度/(m·s−1) 500 隐身飞机编队巡航高度/km 10 隐身飞机编队航路捷径/km 32 纵向编队间距/m 280 巡航时间/s 160 表 2 雷达及干扰参数设置
Table 2. Radar and interference parameter settings
参数设置 数值 雷达平均发射功率/kW 150 雷达发射天线增益/dB 40 雷达接收天线增益/dB 40 雷达接收机带宽/MHz 5 隐身飞机St1干扰功率/W 50 隐身飞机St2干扰功率/W 50 单干扰天线增益/dB 10 单干扰设备损耗/dB 8 单干扰频宽/MHz 32 三代机RCS/dBsm 16 -
[1] 司伟建, 曲志昱, 赵忠凯, 等. 现代电子对抗导论[M]. 北京: 北京航空航天大学出版社, 2016.SI Weijian, QU Zhiyu, ZHAO Zhongkai, et al. Introduction to modern electronic countermeasure[M]. Beijing: Beihang University Press, 2016.(in Chinese) [2] ZIKIDIS K C. Early warning against stealth aircraft, missiles and unmanned aerial vehicles [M].[S. l.]: Surveillance in Action, 2018. [3] 宋海方, 肖明清, 吴华, 等. 不同机载电子干扰条件下的飞机敏感性模型[J]. 航空学报, 2015, 36(11):3630 − 3639.SONG Haifang, XIAO Mingqing, WU Hua, et al. Generic model of aircraft susceptibility to different airborne electronic counter measures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3630 − 3639. (in Chinese) [4] 刘占强, 梁路江, 王春阳. 隐身飞机自卫干扰对雷达探测性能的影响[J]. 北京航空航天大学学报, 2017, 43(12):2520 − 2529.LIU Zhanqiang, LIANG Lujiang, WANG Chunyang. Influence of self-defense jamming of stealth aircraft on radar detection performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12):2520 − 2529. (in Chinese) [5] 刘占强, 梁路江, 王春阳. 隐身飞机随队干扰对雷达探测性能的影响[J]. 探测与控制学报, 2018, 40(1):72 − 79.LIU Zhanqiang, LIANG Lujiang, WANG Chunyang. Stealth aircraft escort-support jamming influence on radar detection performance[J]. Journal of Detection & Control, 2018, 40(1):72 − 79. (in Chinese) [6] 刘恩凯, 何梅晰. 相干两点源干扰下的单脉冲雷达测角误差研究[J]. 舰船电子对抗, 2019, 42(4):20 − 23.LIU Enkai, HE Meixi. Study on angle measurement error of monopulse radar under coherent two-point source interference[J]. Shipboard Electronic Countermeasure, 2019, 42(4):20 − 23. (in Chinese) [7] 刘天鹏. 多源反向交叉眼干扰技术研究[D]. 长沙: 国防科技大学, 2016.LIU Tianpeng. Research on multiple-element retrodirective cross-eye jamming [D]. Changsha: National University of Defense Technology, 2016. (in Chinese) [8] 李皓. 基于单脉冲雷达的多目标检测方法与仿真[D]. 北京: 北京理工大学, 2016.LI Hao. Multi-target detection method and simulation based on monopulse radar [D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese) [9] LI Hao, DENG Jianhao, WANG Xuan, et al. Monopulse DOA estimation of two unresolved targets with SNR estimation [C]//Proceedings of 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference.[S. l.]: IEEE, 2015: 644 − 647. [10] 邹建武, 高明哲, 祝明波, 等. 单脉冲雷达对不可分辨舰船目标的角估计[J]. 电光与控制, 2016, 23(2):21 − 25.ZOU Jianwu, GAO Mingzhe, ZHU Mingbo, et al. Angle estimation of unipulse radar for indistinguishable ship targets[J]. Electro Optic and Control, 2016, 23(2):21 − 25. (in Chinese) [11] 赵宜楠, 姚剑, 李风从. 慢起伏不可分辨目标的单脉冲角估计[J]. 系统工程与电子技术, 2010, 32(10):2021 − 2024. doi: 10.3969/j.issn.1001-506X.2010.10.01ZHAO Yinan, YAO Jian, LI Fengcong. Monopulse angle estimation of slowly fluctuating indistinguishable targets[J]. Systems Engineering and Electronics, 2010, 32(10):2021 − 2024. (in Chinese) doi: 10.3969/j.issn.1001-506X.2010.10.01 [12] 包磊, 王春阳, 白娟, 等. 双隐身飞机自卫相干干扰对单脉冲雷达影响[J]. 北京理工大学学报, 2019, 39(7):763 − 770.BAO Lei, WANG Chunyang, BAI Juan, et al. Influence of coherent jamming of dual stealth aircraft on monopulse radar[J]. Transactions of Beijing University of Technology, 2019, 39(7):763 − 770. (in Chinese) [13] 包磊, 王春阳, 李洪兵, 等. 远距离支援干扰下双隐身飞机自卫相参干扰对单脉冲雷达影响[J]. 系统工程与电子技术, 2019, 41(9):1973 − 1983. doi: 10.3969/j.issn.1001-506X.2019.09.09BAO Lei, WANG Chunyang, LI Hongbing, et al. Influence of self-defense coherent jamming of dual stealth aircraft on monopulse radar with long-range support jamming[J]. Systems Engineering and Electronics, 2019, 41(9):1973 − 1983. (in Chinese) doi: 10.3969/j.issn.1001-506X.2019.09.09 [14] 王彪, 丛伟, 王超哲, 等. 隐身战斗机红外辐射特征计算及红外隐身效果分析[J]. 北京理工大学学报, 2019, 39(4):365 − 371.WANG Biao, CONG Wei, WANG Chaozhe, et al. Infrared radiation characteristics calculation and infrared stealth effect[J]. Transactions of Beijing Institute of Technology, 2019, 39(4):365 − 371. (in Chinese) [15] 高超, 陈文强, 王洪叶, 等. 一种RCS近场测量中天线方向图补偿方法[J]. 北京理工大学学报, 2019, 39(1):58 − 63.GAO Chao, CHEN Wenqiang, WANG Hongye, et al. Antenna compensation in near field RCS measurement[J]. Transactions of Beijing Institute of Technology, 2019, 39(1):58 − 63. (in Chinese) [16] 袁修久, 赵学军, 李嘉林. 基于航迹的飞机姿态角建模与仿真[J]. 系统工程与电子技术, 2016, 38(4):889 − 894.YUAN Xiujiu, ZHAO Xuejun, LI Jialin. Modeling and simulation of aircraft attitude angle based on air-path[J]. Systems Engineering and Electronics, 2016, 38(4):889 − 894. (in Chinese) [17] 刘佳, 方宁, 谢拥军, 等. 姿态扰动情况下的目标动态RCS分布特性[J]. 系统工程与电子技术, 2015, 37(4):775 − 781. doi: 10.3969/j.issn.1001-506X.2015.04.09LIU Jia, FANG Ning, XIE Yongjun, et al. Dynamic target RCS characteristic analysis under the influence of attitude perturbation[J]. Systems Engineering and Electronics, 2015, 37(4):775 − 781. (in Chinese) doi: 10.3969/j.issn.1001-506X.2015.04.09 [18] 戴崇, 徐振海, 肖顺平. 非合作目标动态RCS仿真方法[J]. 航空学报, 2014, 35(5):1374 − 1384.DAI Chong, XU Zhenhai, XIAO Shunping. Simulation method of dynamic RCS for non-cooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1374 − 1384. (in Chinese) [19] 张永顺, 童宁宁, 赵国庆. 雷达电子战原理[M]. 西安: 西北工业大学出版社, 2018.ZHANG Yongshun, TONG Ningnign, ZHAO Guoqing. Principles of radar electronic warfare [M]. Xi'an: Northwest Polytechnic University Press, 2018. (in Chinese) [20] 张曦, 王星, 王红卫, 等. 单脉冲雷达的相干干扰研究[J]. 现代雷达, 2019, 42(4):20 − 23.ZHANG Xi, WANG Xing, WANG Hongwei, et al. Study on angle measurement error of monopulse radar under coherent two-point source interference[J]. Modern Radar, 2019, 42(4):20 − 23. (in Chinese) [21] 崔炳福. 雷达对抗干扰有效性评估[M]. 北京: 电子工业出版社, 2017.CUI Bingfu. Methods effectiveness evaluation of radar countermeasure jamming[M]. Beijing: Publishing House of Electronics Industry, 2017.(in Chinese)