Dynamic Response of E36 Shipbuilding Steel Under High Pressure Impact
-
摘要: 针对船用钢材料在超高应变率下的动态响应机制及变形强化机理尚不明确的技术基础问题,通过一维平板撞击试验测得了10,20及30 GPa撞击压力下E36船用钢的自由表面速率−时间曲线,计算得到了E36船用钢的Hugoniot弹性极限和层裂强度,利用ANSYS软件模拟了不同撞击压力下的温度场;并采用SEM、TEM等技术研究了E36船用钢在高压撞击下的损伤演化规律和变形强化机理. 试验结果表明:不同撞击压力下材料均发生了层裂,毁伤机理为微孔和微裂纹形核、长大和聚合;随着撞击压力的增加,E36船用钢的Hugoniot 弹性极限变化不大,层裂强度逐渐增加,相变强化、位错强化和孪晶强化是E36船用钢在高压、高应变率下的主要强化机制.Abstract: To indicate clearly the dynamic response mechanism and deformation strengthening mechanism of shipbuilding steel materials under ultra-high strain rate, the free surface velocity-time curve of E36 shipbuilding steel under impact pressure of 10, 20 and 30 GPa was measured through one-dimensional plate impact test, and the Hugoniot elastic limit and spall strength of E36 shipbuilding steel were calculated. ANSYS software was used to simulate the temperature field under different impact pressure. The damage evolution law and deformation strengthening mechanism of E36 shipbuilding steel under high-pressure impact were studied based on SEM, TEM and other techniques. The results show that the spalling occurs in the materials under the above mentioned impact pressures, and the damage mechanism is the nucleation, growth and aggregation of micropores and microcracks. With the increase of impact pressure, the Hugoniot elastic limit of E36 shipbuilding steel change little while the spalling strength gradually increases. Phase transformation strengthening, dislocation strengthening and twin strengthening are the main strengthening mechanisms of E36 shipbuilding steel under high pressure and high strain rate.
-
表 1 E36船用钢的主要化学成分(质量分数)
Table 1. The main chemical composition of E36 shipbuilding steel (wt. %)
Fe C Mn Si Nb Mo Ti 98.046 0.170 1.400 0.350 0.025 0.006 0.003 表 2 E36船用钢的主要物理参数
Table 2. Main physical parameters of E36 shipbuilding steel
$ {\rho _0} $/(g·cm−3) $ {C_{\text{L}}} $/(km·s−1) $ {C_{\text{T}}} $/(km·s−1) $ {C_{\text{B}}} $/(km·s−1) 7.847 5.93 3.22 4.61 表 3 一维平板撞击试验结果
Table 3. The main results of the one-dimensional plate impact test
$ {u_{\text{f}}} $/(m·s−1) $ {\sigma _{\text{H}}} $/GPa $ {\sigma _{{\text{HEL}}}} $/GPa $ {\sigma _{{\text{SP}}}} $/GPa 527.3 10 2.26 2.81 1225.0 20 2.13 3.60 1563.7 30 2.13 4.97 -
[1] 赵捷. 我国高品质船舶、海洋工程用钢研究进展[J]. 材料导报, 2018, 32(增刊1): 428−431.ZHAO Jie. Research progress of my country's high-quality steel for ships and marine engineering[J]. Materials Guide, 2018, 32(suppl 1): 428−431. (in Chinese) [2] 袁胜福. 高性能海洋工程用钢组织调控及力学性能研究[D]. 北京: 北京科技大学, 2020.YUAN Shengfu. Research on microstructure control and mechanical properties of high-performance offshore engineering steel[D]. Beijing: Beijing University of Science and Technology, 2020. (in Chinese) [3] 邸新杰, 巴凌志, 利成宁. 海洋工程用焊接材料的研究现状及发展趋势[J]. 电焊机, 2020, 50(9):92 − 102. doi: 10.7512/j.issn.1001-2303.2020.09.10DI Xinjie, BA Lingzhi, LI Chengning. Research status and development trend of welding materials for marine engineering[J]. Electric Welding Machine, 2020, 50(9):92 − 102. (in Chinese) doi: 10.7512/j.issn.1001-2303.2020.09.10 [4] GHEORGHIES C, PALAGHIAN L, BAICEAN S, et al. Fatigue behaviour of naval steel under seawater environmental and variable loading conditions[J]. Journal of Iron and Steel Research, International, 2011, 18(5):64 − 69. doi: 10.1016/S1006-706X(11)60067-8 [5] WU H B, LIANG J M, TANG D, et al. Influence of inclusion on corrosion behavior of E36 grade low alloy steel[J]. Journal of Iron and Steel Research, International, 2014, 21(11):1016 − 1021. doi: 10.1016/S1006-706X(14)60177-1 [6] LEMOS G V B, CUNHA P H C P, NUNES R M, et al. Residual stress and microstructural features of friction-stir-welded GL E36 shipbuilding steel[J]. Materials Science and Technology, 2018, 34(1):95 − 103. doi: 10.1080/02670836.2017.1361148 [7] 赵宏伟, 贺元吉, 成丽蓉, 等. 带前舱战斗部对钢筋混凝土侵彻规律研究[J]. 北京理工大学学报, 2019, 39(6):578 − 582.ZHAO Hongwei, HE Yuanji, CHENG Lirong, et al. Study on the law of penetration of reinforced concrete by warhead with forecabin[J]. Transactions of Beijing Institute of Technology, 2019, 39(6):578 − 582. (in Chinese) [8] 钟巍, 寿列枫, 王仲琦, 等. PVB夹层钢化玻璃冲击波毁伤效应实验研究[J]. 北京理工大学学报, 2019, 39(6):565 − 570.ZHONG Wei, SHOU Liefeng, WANG Zhongqi, et al. Experimental study on explosion shock wave damage effect of tempered glass with PVB interlayer[J]. Transactions of Beijing Institute of Technology, 2019, 39(6):565 − 570. (in Chinese) [9] 吴志强. 高强度高塑性低密度钢的组织性能和变形机制研究[D]. 沈阳: 东北大学, 2015.WU Zhiqiang. Research on the microstructure and deformation mechanism of high-strength, high-plasticity and low-density steel[D]. Shenyang: Northeastern University, 2015. (in Chinese) [10] MANJANNA J, KOBAYASHI S, KAMADA Y, et al. Martensitic transformation in SUS 316LN austenitic stainless steel at RT[J]. Materials Science and Engineering:A, 2008, 43:2659 − 2665. [11] MERTINGERA V, NAGY E, TRANTA F, et al. Strain-induced martensitic transformation in textured austenitic stainless steels[J]. Materials Science and Engineering:A, 2008, 481:718 − 722. [12] MÉSZÁROS I, PROHÁSZKA J. Magnetic investigation of the effect of α’-martensite on the properties of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2005, 161:162 − 168. doi: 10.1016/j.jmatprotec.2004.07.020 [13] ACHARYA S, MOITRA A, BYSAKH S, et al. Effect of high strain rate deformation on the properties of SS304L and SS316LN alloys[J]. Mechanics of Materials, 2019, 136:103073. doi: 10.1016/j.mechmat.2019.103073 [14] ROY S K, TRABIA M, TOOLE B, et al. Study of hypervelocity projectile impact on thick metal plates[J]. Shock and Vibration, 2016, 2016:1 − 11. [15] ECKNER R, KRÜGER L, MOTYLENKO M, et al. Deformation mechanisms and microplasticity of austenitic TRIP/TWIP steel under flyer plate impact[J]. EPJ Web of Conferences, 2018, 183:3007. doi: 10.1051/epjconf/201818303007 [16] KETTENBEIL C, LOVINGER Z, RAVINDRAN S, et al. Pressure-shear plate impact experiments at high pressures[J]. Journal of Dynamic Behavior of Materials, 2020, 6(4):489 − 501. doi: 10.1007/s40870-020-00250-y [17] KALANTAR D H, COLLINS G W, COLVIN J D, et al. In situ diffraction measurements of lattice response due to shock loading, including direct observation of the α-ε phase transition in iron[J]. International Journal of Impact Engineering, 2006, 33:343 − 352. doi: 10.1016/j.ijimpeng.2006.09.050 [18] 李俊. 金属铁相变热力学及动力学特性的宏-微观实验研究[D]. 绵阳: 中国工程物理研究院, 2017.LI Jun. Macro-micro experimental study on the thermodynamics and kinetic characteristics of metallic iron phase transition[D]. Mianyang: China Academy of Engineering Physics, 2017. (in Chinese) [19] KALANTAR D H, BELAK J F, COLLINS G W, et al. Direct observation of the alpha-epsilon transition in shock-compressed iron via nanosecond x-ray diffraction[J]. Phys Rev Lett, 2005, 95(7):75502. doi: 10.1103/PhysRevLett.95.075502 [20] DYACHKOV S A, ILNITSKY D K, PARSHIKOV A N, et al. The model of iron properties for plate impact and explosive compression simulations[J]. Journal of Physics Conference Series, 2020, 1556(1):12032. doi: 10.1088/1742-6596/1556/1/012032 [21] WANG B, URBASSEK H M. Molecular dynamics study of the α–γ phase transition in Fe induced by shear deformation[J]. Acta Materialia, 2013, 61(16):5979 − 5987. doi: 10.1016/j.actamat.2013.05.045 [22] YANG X, SUN S, ZHANG T. The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ → hcp ε → bcc α′ martensitic phase transformation[J]. Acta Materialia, 2015, 95:264 − 273. doi: 10.1016/j.actamat.2015.05.034 [23] ZAOUI Y, BENDAOUD H, OBODO K O, et al. Competition between the hcp nonmagnetic and antiferromagnetic phases in the transition path of Fe under pressure[J]. Journal of Magnetism and Magnetic Materials, 2020, 499:166312. doi: 10.1016/j.jmmm.2019.166312 [24] 李金柱, 李明静, 李海生, 等. 玻璃钢-聚氨酯泡沫夹层板抗破片侵彻贯穿研究[J]. 北京理工大学学报, 2021, 41(2):121 − 129.LI Jinzhu, LI Mingjing, LI Haisheng, et al. Impact resistance of glass fiber reinforced plastic-polyurethane foam sandwich panels against projectiles[J]. Transactions of Beijing Institute of Technology, 2021, 41(2):121 − 129. (in Chinese) [25] 汪维, 刘光昆, 汪琴, 等. 钢结构箱体内爆作用下毁伤破坏试验研究[J]. 北京理工大学学报, 2019, 39(12):1225 − 1231.WANG Wei, LIU Guangkun, WANG Qin, et al. Experimental research of steel box under internal blast loading[J]. Transactions of Beijing Institute of Technology, 2019, 39(12):1225 − 1231. (in Chinese) [26] REN J, XU Y, ZHAO X, et al. Dynamic mechanical behaviors and failure thresholds of ultra-high strength low-alloy steel under strain rate 0.001/s to 106/s[J]. Materials Science and Engineering:A, 2018, 719:178 − 191. doi: 10.1016/j.msea.2018.02.019 [27] 宁保群, 刘永长, 高志眀, 等. 淬火速率对T91铁素体耐热钢马氏体转变开始温度的影响[J]. 材料科学与工程学报, 2008(1):61 − 63.NING Baoqun, LIU Yongchang, GAO Zhixuan, et al. The effect of quenching rate on the start temperature of martensite transformation of T91 ferritic heat-resistant steel[J]. Journal of Materials Science and Engineering, 2008(1):61 − 63. (in Chinese) [28] 李苗苗. 高氮马氏体/铁素体耐热钢的制备及相变研究[D]. 天津: 天津理工大学, 2019.LI Miaomiao. Preparation and phase transformation of high-nitrogen martensitic/ferritic heat-resistant steel[D]. Tianjin: Tianjin University of Technology, 2019. (in Chinese) [29] 任津毅, 李长生, 韩亚辉, 等. 冷却速率对3Cr2MnNiMo钢组织和硬度的影响[J]. 机械工程材料, 2020, 44(增刊2): 34-38.REN Jinyi, LI Changsheng, HAN Yahui, et al. The effect of cooling rate on the microstructure and hardness of 3Cr2MnNiMo steel[J]. Materials for Mechanical Engineering, 2020, 44(suppl 2): 34-38. (in Chinese) [30] 邓杰, 孙新军, 张涛, 等. 冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响[J]. 材料导报, 2020, 34(10):10126 − 10131. doi: 10.11896/cldb.19050036DENG Jie, SUN Xinjun, ZHANG Tao, et al. The effect of cooling rate on the microstructure and hardness of medium manganese martensitic wear-resistant steel[J]. Materials Review, 2020, 34(10):10126 − 10131. (in Chinese) doi: 10.11896/cldb.19050036 [31] PAN M, ZHANG X, ZHOU D, et al. Fe–Mn–Si–Cr–Ni based shape memory alloy: thermal and stress-induced martensite[J]. Materials Science and Engineering: A, 2020, 797: 140107. [32] HUANG Y, XIONG Y, LI P, et al. Atomistic studies of shock-induced plasticity and phase transition in iron-based single crystal with edge dislocation[J]. International Journal of Plasticity, 2019, 114: 215 − 226. [33] 刘宗昌, 王海燕, 袁长军, 等. 马氏体形核-长大机制的研究[J]. 内蒙古科技大学学报, 2009, 28(3):195 − 201. doi: 10.3969/j.issn.2095-2295.2009.03.001LIU Zhongchang, WANG Haiyan, YUAN Changjun, et al. Nucleation and growth mechanisms of martensite[J]. Journal of Inner Mongolia University of Science and Technology, 2009, 28(3):195 − 201. (in Chinese) doi: 10.3969/j.issn.2095-2295.2009.03.001 [34] PAN H, HE Y, ZHANG X. Interactions between dislocations and boundaries during deformation[J]. Materials, 2021, 14(4):1012. doi: 10.3390/ma14041012 [35] ZHAO F, XIE J, ZHU Y, et al. A novel dynamic extrusion for microstructure tailoring and evading strength-ductility trade-off in AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2021, 870:159411. doi: 10.1016/j.jallcom.2021.159411