留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶结充填体冲击破坏及损伤演化数值模拟研究

李祥龙 李强 王建国 杨长辉 陶子豪 左庭 赵泽虎

李祥龙, 李强, 王建国, 杨长辉, 陶子豪, 左庭, 赵泽虎. 胶结充填体冲击破坏及损伤演化数值模拟研究[J]. 机械工程学报, 2022, 42(7): 733-740. doi: 10.15918/j.tbit1001-0645.2021.189
引用本文: 李祥龙, 李强, 王建国, 杨长辉, 陶子豪, 左庭, 赵泽虎. 胶结充填体冲击破坏及损伤演化数值模拟研究[J]. 机械工程学报, 2022, 42(7): 733-740. doi: 10.15918/j.tbit1001-0645.2021.189
LI Xianglong, LI Qiang, WANG Jianguo, YANG Changhui, TAO Zihao, ZUO Ting, ZHAO Zehu. Numerical Simulation Research on Impact Failure and Damage Evolution of Cemented Backfill[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 42(7): 733-740. doi: 10.15918/j.tbit1001-0645.2021.189
Citation: LI Xianglong, LI Qiang, WANG Jianguo, YANG Changhui, TAO Zihao, ZUO Ting, ZHAO Zehu. Numerical Simulation Research on Impact Failure and Damage Evolution of Cemented Backfill[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 42(7): 733-740. doi: 10.15918/j.tbit1001-0645.2021.189

胶结充填体冲击破坏及损伤演化数值模拟研究

doi: 10.15918/j.tbit1001-0645.2021.189
基金项目: 国家自然科学基金重点资助项目(51934003);国家自然科学基金地区基金资助项目(52064025);云南省基础研究计划面上项目(202201AT070178)
详细信息
    作者简介:

    李祥龙(1981−),男,教授,博士生导师. E-mail:lxl00014002@163.com

    通讯作者:

    王建国(1987−),男,博士,讲师. E-mail:wangjg0831@163.com

  • 中图分类号: TU45

Numerical Simulation Research on Impact Failure and Damage Evolution of Cemented Backfill

  • 摘要: 为定量描述胶结充填体在动载作用下的损伤程度及破坏过程,利用数值模拟软件对胶结充填体进行SHPB动态冲击,并通过室内SHPB冲击试验结果验证数值模拟方法的可行性. 对不同冲击速度(1.5 ,1.7 ,1.8 ,2.0 m/s)条件下4种配比胶结充填体(灰砂质量比分别为1∶4, 1∶6, 1∶8, 1∶10),采用微裂纹密度法定义损伤变量值d,进行损伤规律及破坏过程的数值模拟研究. 结果表明:数值模拟中使用波形整形器可获得更加理想的矩形波,使试件同一平面单元所受应力均匀,无应力集中现象;数值模拟结果很好地展现了胶结充填体的动态破坏过程,其整体破坏趋势为边缘发生剥落后裂纹向内部延伸与贯穿;在加载速度从1.7 m/s增加至1.8 m/s的过程中,损伤变量增大幅度超过10%;冲击速度由1.5 m/s增加至2.0 m/s的过程中,灰砂质量比为1∶4, 1∶6, 1∶8和1∶10的胶结充填体的损伤变量d变化范围分别为0.238~0.336,0.274~0.413,0.391~0.547,0.473~0.617,灰砂质量比1∶6变化至1∶8时,出现明显的损伤“跃升”现象.

     

  • 图  尾砂粒径分布曲线

    Figure  1.  Distribution curve of tailings particle size

    图  试件样本图

    Figure  2.  Sample diagram

    图  SHPB试验系统示意图

    Figure  3.  The schematic diagram of SHPB's compression apparatus

    图  系统宏观模型与网格划分

    Figure  4.  System macro model and meshing

    图  波形整形器放大图

    Figure  5.  Magnified view of wave shaper

    图  波形整形器效果图

    Figure  6.  Wave shaper rendering

    图  应力监测点

    Figure  7.  Stress monitoring point

    图  应力时程曲线

    Figure  8.  Stress time history curve

    图  子弹速度为1.7 m/s时应力应变曲线对比图

    Figure  9.  Comparison of stress-strain curves when the bullet velocity is 1.7 m/s

    图  10  胶结充填体破碎形态对比图

    Figure  10.  Comparison chart of crushed forms of cemented backfill

    图  11  灰砂质量比1∶4胶结充填体破坏过程

    Figure  11.  Failure process of cemented backfill with 1∶4 mass ratio of cement to sand

    图  12  损伤变量曲线图

    Figure  12.  Damage variable graph

    表  1  胶结充填体基本物理力学参数

    Table  1.   Basic physical and mechanical parameters of cemented backfill

    配比平均密度ρ/(kg·m−3单轴抗压强度fc/MPa抗拉强度T/MPa弹性模量E/GPa泊松比v
    1∶4 1 715.7 3.63 0.357 0.632 0.20
    1∶6 1 708.1 3.25 0.311 0.506 0.18
    1∶8 1 696.9 1.92 0.205 0.474 0.16
    1∶10 1 681.4 1.41 0.154 0.469 0.12
     注:为了避免实验误差及偶然性,每种配比试件参数取平均值
    下载: 导出CSV

    表  2  胶结充填体HJC模型参数

    Table  2.   HJC model parameters of cemented backfill

    R0/(g·m−3)G/GPaT/MPafc/MPaCESPOABNSFMAX
    1.7163200.3573.6300.01010−60.3500.8500.6107.000
    pl/GPapc/MPaμlμcK1/GPaK2/GPaK3/GPaD1D2EFIMNFs
    0.1001.2100.1400.0148.500−1720.800.0401.0000.0100.004
    下载: 导出CSV

    表  3  动态冲击下胶结充填体损伤变量

    Table  3.   Damage variable of cemented backfill under dynamic impact

    编号灰砂质量比v/(m·s−1)V/(10−6m3)d
    11∶42.0013.40.336
    21.8013.70.317
    31.7014.60.274
    41.5015.30.238
    51∶62.0011.80.413
    61.8012.60.374
    71.7013.50.331
    81.5014.60.274
    91∶82.009.110.547
    101.8010.60.474
    111.7011.40.433
    121.5012.20.391
    131∶102.007.690.617
    141.808.600.571
    151.709.810.514
    161.5010.600.473
    下载: 导出CSV
  • [1] 赵康, 朱胜唐, 周科平, 等. 钽铌矿尾砂胶结充填体力学特性及损伤规律研究[J]. 采矿与安全工程学报, 2019, 36(2):413 − 419.

    ZHAO Kang, ZHU Shengtang, ZHOU Keping, et al. Research on mechanical properties and damage law of tantalum-niobium ore cemented tailings backfill[J]. Journal of Mining & Safety Engineering, 2019, 36(2):413 − 419. (in Chinese)
    [2] CAO S, SONG W D, EROL Y. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill[J]. Construction and Building Materials, 2018, 174(174):190 − 201.
    [3] 刘艳章, 李凯兵, 黄诗冰, 等. 单轴压缩条件下尾砂胶结充填体的损伤变量与比能演化[J]. 矿冶工程, 2019, 39(6):1 − 4+9. doi: 10.3969/j.issn.0253-6099.2019.06.001

    LIU Yanzhang, LI Kaibing, HUANG Shibing, et al. Analysis of damage variables and specific energy evolution for cemented tailings backfill under uniaxial compression condition[J]. Mining and Metallurgical Engineering, 2019, 39(6):1 − 4+9. (in Chinese) doi: 10.3969/j.issn.0253-6099.2019.06.001
    [4] 杨伟, 张钦礼, 杨珊, 等. 动载下高浓度全尾砂胶结充填体的力学特性[J]. 中南大学学报:自然科学版, 2017, 48(1):156 − 161.

    YANG Wei, ZHANG Qinli, YANG Shan, et al. Mechanical property of high concentration total tailing cemented backfilling under dynamic loading[J]. Journal of Central South University:Science and Technology, 2017, 48(1):156 − 161. (in Chinese)
    [5] 刘志祥, 李夕兵, 戴塔根, 等. 尾砂胶结充填体损伤模型及与岩体的匹配分析[J]. 岩土力学, 2006, 27(9):1442 − 1446. doi: 10.3969/j.issn.1000-7598.2006.09.002

    LIU Zhixiang, LI Xibing, DAI Tagen, et al. On damage model of cemented tailings backfill and its match with rock mass[J]. Rock and Soil Mechanics, 2006, 27(9):1442 − 1446. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.09.002
    [6] 黄欣成, 卢文波, 张立新, 等. 全尾砂胶结充填体的爆破振动破坏机制和振动速度阈值研究[J]. 爆破, 2021, 38(1):1 − 7. doi: 10.3963/j.issn.1001-487X.2021.01.001

    HUANG Xincheng, LU Wenbo, ZHANG Lixin, et al. Study on blasting vibration failure mechanism and vibration velocity threshold of total tailing cemented backfill[J]. Blasting, 2021, 38(1):1 − 7. (in Chinese) doi: 10.3963/j.issn.1001-487X.2021.01.001
    [7] 朱鹏瑞, 宋卫东, 徐琳慧, 等. 冲击荷载作用下胶结充填体的力学特性研究[J]. 振动与冲击, 2018, 37(12):131 − 137+166.

    ZHU Pengrui, SONG Weidong, XU Linhui, et al. A study on mechanical properties of cemented backfills under impact compressive loading[J]. Journal of Vibration and Shock, 2018, 37(12):131 − 137+166. (in Chinese)
    [8] 徐晓冬, 孙光华, 姚旭龙, 等. 基于能量耗散与释放的充填体失稳尖点突变预警模型[J]. 岩土力学, 2020, 41(9):3003 − 3012.

    XU Xiaodong, SUN Guanghua, YAO Xulong, et al. Early warning model of instability cusp catastrophe of backfill based on energy dissipation and release[J]. Rock and Soil Mechanics, 2020, 41(9):3003 − 3012. (in Chinese)
    [9] MU Y Y, LI X L, WANG J G, et al. Research on the mechanical properties and energy consumption transfer law of cement tailings backfill under impact load[J]. Science of Advanced Materials, 2021, 13(5):889 − 898. doi: 10.1166/sam.2021.3974
    [10] 侯永强, 尹升华, 杨世兴, 等. 冲击载荷下胶结充填体的力学性能及能耗特征[J]. 华中科技大学学报:自然科学版, 2020, 48(8):50 − 56.

    HOU Yongqiang, YIN Shenghuo, YANG Shixing, et al. Mechanical properties and energy consumption characteristics of cemented backfill under impact load[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2020, 48(8):50 − 56. (in Chinese)
    [11] 杨伟, 陶明, 李夕兵, 等. 高应变率下灰砂比对全尾胶结充填体力学性能影响[J]. 东北大学学报:自然科学版, 2017, 38(11):1659 − 1663.

    YANG Wei, TAO Ming, LI Xibing, et al. Mechanical properties of the total tailing cemented backfilling impacted by cement-sand ratio under high strain rate[J]. Journal of Northeastern University: Natural Science, 2017, 38(11):1659 − 1663. (in Chinese)
    [12] ZHANG Z Y, QIAN Q Y, WANG H, et al. Study on the dynamic mechanical properties of metamorphic limestone under impact loading[J]. Lithosphere, 2021 (Special 4): 8403502.
    [13] WANG J G, ZUO T, LI X L, et al. Study on the fractal characteristics of the pomegranate biotite schist under impact loading[J]. Geofluids, 2021, 2021:1570160(1 − 8). doi: 10.1155/2021/1570160
    [14] 杨阳, 李祥龙, 杨仁树, 等. 低温岩石冲击破碎分形特征与断口形貌分析[J]. 北京理工大学学报, 2020, 40(6):632 − 639+682.

    YANG Yang, LI Xianglong, YANG Renshu, et al. Study on fractal characteristics and fracture mechanism of frozen rocks[J]. Transactions of Beijing Institute of Technology, 2020, 40(6):632 − 639+682. (in Chinese)
    [15] YANG Y, ZHANG N N, WANG J G. A Study on the dynamic strength deterioration mechanism of frozen red sandstone at low temperatures[J]. Minerals, 2021, 11:1300. doi: 10.3390/min11121300
    [16] 王建国, 梁书锋, 高全臣, 等. 节理倾角对类岩石冲击能量传递影响的试验研究[J]. 中南大学学报:自然科学版, 2018, 49(5):1237 − 1243.

    WANG Jianguo, LIANG Shufeng, GAO Quanchen, et al. Experimental study of jointed angles impact on energy transfer characteristics of simulated rock material[J]. Journal of Central South University:Science and Technology, 2018, 49(5):1237 − 1243. (in Chinese)
    [17] 李洪超, 陈勇, 刘殿书, 等. 岩石RHT模型主要参数敏感性及确定方法研究[J]. 北京理工大学学报, 2018, 38(8):779 − 785.

    LI Hongchao, CHEN Yong, LIU Dianshu, et al. Sensitivity analysis determination and optimization of rock RHT parameters[J]. Transactions of Beijing Institute of Technology, 2018, 38(8):779 − 785. (in Chinese)
    [18] 张明涛, 王伟, 张思怡, 等. 冲击荷载作用下灰砂岩破坏过程及损伤数值模拟研究[J]. 爆破, 2020, 37(1):46 − 54. doi: 10.3963/j.issn.1001-487X.2020.01.007

    ZHANG Mingtao, WANG Wei, ZHANG Siyi, et al. Numerical simulation of failure process and damage of gray sandstone under impact loading[J]. Blasting, 2020, 37(1):46 − 54. (in Chinese) doi: 10.3963/j.issn.1001-487X.2020.01.007
    [19] 李祥龙, 张松涛, 李明扬, 等. 基于AUTODYN的岩石中爆炸鼓包运动模拟[J]. 煤炭学报, 2013, 33(12):1220 − 1223.

    LI Xianglong, ZHANG Songtao, LI Mingyang, et al. Simulation research of AUTODYN-based bulging motion of rock blast[J]. Journal of China Coal Society, 2013, 33(12):1220 − 1223. (in Chinese)
    [20] 黄永辉, 梁书锋, 刘殿书, 等. 三维SHPB装置设计及原理研究[J]. 北京理工大学学报, 2014, 34(10):1024 − 1027+1033.

    HUANG Yonghui, LIANG Shufeng, LIU Dianshu, et al. 3D SHPB device experimental design and principle research[J]. Transactions of Beijing Institute of Technology, 2014, 34(10):1024 − 1027+1033. (in Chinese)
    [21] 李祥龙, 王建国, 张智宇, 等. 应变率及节理倾角对岩石模拟材料动力特性的影响[J]. 爆炸与冲击, 2016, 36(4):483 − 490. doi: 10.11883/1001-1455(2016)04-0483-08

    LI Xianglong, WANG Jianguo, ZHANG Zhiyu, et al. Experimental study for effects of strain rates and joint angles on dynamic responses of simulated rock materials[J]. Explosion and Shock Waves, 2016, 36(4):483 − 490. (in Chinese) doi: 10.11883/1001-1455(2016)04-0483-08
    [22] 柴少波, 王昊, 井彦林, 等. 充填节理岩石累积损伤动力压缩特性试验研究[J]. 岩石力学与工程学报, 2020, 39(10):2025 − 2037.

    CHAI Shaobo, WANG Hao, JING Yanlin, et al. Experimental study on cumulative damage dynamic compression characteristics of filled jointed rock[J]. Rock Mechanics and Engineering, 2020, 39(10):2025 − 2037. (in Chinese)
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  69
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 录用日期:  2021-12-15
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回