Numerical Simulation Research on Impact Failure and Damage Evolution of Cemented Backfill
-
摘要: 为定量描述胶结充填体在动载作用下的损伤程度及破坏过程,利用数值模拟软件对胶结充填体进行SHPB动态冲击,并通过室内SHPB冲击试验结果验证数值模拟方法的可行性. 对不同冲击速度(1.5 ,1.7 ,1.8 ,2.0 m/s)条件下4种配比胶结充填体(灰砂质量比分别为1∶4, 1∶6, 1∶8, 1∶10),采用微裂纹密度法定义损伤变量值d,进行损伤规律及破坏过程的数值模拟研究. 结果表明:数值模拟中使用波形整形器可获得更加理想的矩形波,使试件同一平面单元所受应力均匀,无应力集中现象;数值模拟结果很好地展现了胶结充填体的动态破坏过程,其整体破坏趋势为边缘发生剥落后裂纹向内部延伸与贯穿;在加载速度从1.7 m/s增加至1.8 m/s的过程中,损伤变量增大幅度超过10%;冲击速度由1.5 m/s增加至2.0 m/s的过程中,灰砂质量比为1∶4, 1∶6, 1∶8和1∶10的胶结充填体的损伤变量d变化范围分别为0.238~0.336,0.274~0.413,0.391~0.547,0.473~0.617,灰砂质量比1∶6变化至1∶8时,出现明显的损伤“跃升”现象.
-
关键词:
- SHPB实验数值模拟 /
- 动态加载 /
- 胶结充填体 /
- 动态破碎过程 /
- 损伤演化
Abstract: In order to quantitatively describe the damage degree and failure process of the cemented backfill under dynamic load, numerical simulation software was used to perform SHPB dynamic impact on the cemented backfill, and the feasibility of the numerical simulation method was verified by the indoor SHPB impact test results. For 4 kinds of cemented fillings (with cement-sand mass ratios of 1∶4, 1∶6, 1∶8 and 1∶10 respectively) made under different impact speeds (1.5, 1.7, 1.8, and 2.0 m/s), the micro-crack density method was used to define the damage variable value d, and a numerical simulation study of the damage law and the failure process was conducted. The results are as follows. The wave shaper can be used in the numerical simulation to obtain a more ideal rectangle wave, making the stress on the same plane element of the specimen uniform without stress concentration. The numerical simulation results show the dynamic failure process of the cemented filling body, and the overall failure trend is that the edge peels off and the crack extends to the inside. In the process of increasing the loading speed from 1.7 m/s to 1.8 m/s, the damage variable increases by more than 10%; during the process of increasing the impact speed from 1.5 m/s to 2.0 m/s, the variation ranges of the damage variable d of the cemented filling body with the cement-sand mass ratios of 1∶4, 1∶6, 1∶8 and 1∶10 are 0.238~0.336, 0.274~0.413, 0.391~0.547, and 0.473~0.617, respectively. When the lime-to-sand ratio changes from 1:6 to 1:8, the damage “jumps” remarkably. -
表 1 胶结充填体基本物理力学参数
Table 1. Basic physical and mechanical parameters of cemented backfill
配比 平均密度ρ/(kg·m−3) 单轴抗压强度fc/MPa 抗拉强度T/MPa 弹性模量E/GPa 泊松比v 1∶4 1 715.7 3.63 0.357 0.632 0.20 1∶6 1 708.1 3.25 0.311 0.506 0.18 1∶8 1 696.9 1.92 0.205 0.474 0.16 1∶10 1 681.4 1.41 0.154 0.469 0.12 注:为了避免实验误差及偶然性,每种配比试件参数取平均值 表 2 胶结充填体HJC模型参数
Table 2. HJC model parameters of cemented backfill
R0/(g·m−3) G/GPa T/MPa fc/MPa C ESPO A B N SFMAX 1.716 320 0.357 3.630 0.010 10−6 0.350 0.850 0.610 7.000 pl/GPa pc/MPa μl μc K1/GPa K2/GPa K3/GPa D1 D2 EFIMN Fs 0.100 1.210 0.140 0.014 8.500 −17 20.80 0.040 1.000 0.010 0.004 表 3 动态冲击下胶结充填体损伤变量
Table 3. Damage variable of cemented backfill under dynamic impact
编号 灰砂质量比 v/(m·s−1) V/(10−6m3) d 1 1∶4 2.00 13.4 0.336 2 1.80 13.7 0.317 3 1.70 14.6 0.274 4 1.50 15.3 0.238 5 1∶6 2.00 11.8 0.413 6 1.80 12.6 0.374 7 1.70 13.5 0.331 8 1.50 14.6 0.274 9 1∶8 2.00 9.11 0.547 10 1.80 10.6 0.474 11 1.70 11.4 0.433 12 1.50 12.2 0.391 13 1∶10 2.00 7.69 0.617 14 1.80 8.60 0.571 15 1.70 9.81 0.514 16 1.50 10.60 0.473 -
[1] 赵康, 朱胜唐, 周科平, 等. 钽铌矿尾砂胶结充填体力学特性及损伤规律研究[J]. 采矿与安全工程学报, 2019, 36(2):413 − 419.ZHAO Kang, ZHU Shengtang, ZHOU Keping, et al. Research on mechanical properties and damage law of tantalum-niobium ore cemented tailings backfill[J]. Journal of Mining & Safety Engineering, 2019, 36(2):413 − 419. (in Chinese) [2] CAO S, SONG W D, EROL Y. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill[J]. Construction and Building Materials, 2018, 174(174):190 − 201. [3] 刘艳章, 李凯兵, 黄诗冰, 等. 单轴压缩条件下尾砂胶结充填体的损伤变量与比能演化[J]. 矿冶工程, 2019, 39(6):1 − 4+9. doi: 10.3969/j.issn.0253-6099.2019.06.001LIU Yanzhang, LI Kaibing, HUANG Shibing, et al. Analysis of damage variables and specific energy evolution for cemented tailings backfill under uniaxial compression condition[J]. Mining and Metallurgical Engineering, 2019, 39(6):1 − 4+9. (in Chinese) doi: 10.3969/j.issn.0253-6099.2019.06.001 [4] 杨伟, 张钦礼, 杨珊, 等. 动载下高浓度全尾砂胶结充填体的力学特性[J]. 中南大学学报:自然科学版, 2017, 48(1):156 − 161.YANG Wei, ZHANG Qinli, YANG Shan, et al. Mechanical property of high concentration total tailing cemented backfilling under dynamic loading[J]. Journal of Central South University:Science and Technology, 2017, 48(1):156 − 161. (in Chinese) [5] 刘志祥, 李夕兵, 戴塔根, 等. 尾砂胶结充填体损伤模型及与岩体的匹配分析[J]. 岩土力学, 2006, 27(9):1442 − 1446. doi: 10.3969/j.issn.1000-7598.2006.09.002LIU Zhixiang, LI Xibing, DAI Tagen, et al. On damage model of cemented tailings backfill and its match with rock mass[J]. Rock and Soil Mechanics, 2006, 27(9):1442 − 1446. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.09.002 [6] 黄欣成, 卢文波, 张立新, 等. 全尾砂胶结充填体的爆破振动破坏机制和振动速度阈值研究[J]. 爆破, 2021, 38(1):1 − 7. doi: 10.3963/j.issn.1001-487X.2021.01.001HUANG Xincheng, LU Wenbo, ZHANG Lixin, et al. Study on blasting vibration failure mechanism and vibration velocity threshold of total tailing cemented backfill[J]. Blasting, 2021, 38(1):1 − 7. (in Chinese) doi: 10.3963/j.issn.1001-487X.2021.01.001 [7] 朱鹏瑞, 宋卫东, 徐琳慧, 等. 冲击荷载作用下胶结充填体的力学特性研究[J]. 振动与冲击, 2018, 37(12):131 − 137+166.ZHU Pengrui, SONG Weidong, XU Linhui, et al. A study on mechanical properties of cemented backfills under impact compressive loading[J]. Journal of Vibration and Shock, 2018, 37(12):131 − 137+166. (in Chinese) [8] 徐晓冬, 孙光华, 姚旭龙, 等. 基于能量耗散与释放的充填体失稳尖点突变预警模型[J]. 岩土力学, 2020, 41(9):3003 − 3012.XU Xiaodong, SUN Guanghua, YAO Xulong, et al. Early warning model of instability cusp catastrophe of backfill based on energy dissipation and release[J]. Rock and Soil Mechanics, 2020, 41(9):3003 − 3012. (in Chinese) [9] MU Y Y, LI X L, WANG J G, et al. Research on the mechanical properties and energy consumption transfer law of cement tailings backfill under impact load[J]. Science of Advanced Materials, 2021, 13(5):889 − 898. doi: 10.1166/sam.2021.3974 [10] 侯永强, 尹升华, 杨世兴, 等. 冲击载荷下胶结充填体的力学性能及能耗特征[J]. 华中科技大学学报:自然科学版, 2020, 48(8):50 − 56.HOU Yongqiang, YIN Shenghuo, YANG Shixing, et al. Mechanical properties and energy consumption characteristics of cemented backfill under impact load[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2020, 48(8):50 − 56. (in Chinese) [11] 杨伟, 陶明, 李夕兵, 等. 高应变率下灰砂比对全尾胶结充填体力学性能影响[J]. 东北大学学报:自然科学版, 2017, 38(11):1659 − 1663.YANG Wei, TAO Ming, LI Xibing, et al. Mechanical properties of the total tailing cemented backfilling impacted by cement-sand ratio under high strain rate[J]. Journal of Northeastern University: Natural Science, 2017, 38(11):1659 − 1663. (in Chinese) [12] ZHANG Z Y, QIAN Q Y, WANG H, et al. Study on the dynamic mechanical properties of metamorphic limestone under impact loading[J]. Lithosphere, 2021 (Special 4): 8403502. [13] WANG J G, ZUO T, LI X L, et al. Study on the fractal characteristics of the pomegranate biotite schist under impact loading[J]. Geofluids, 2021, 2021:1570160(1 − 8). doi: 10.1155/2021/1570160 [14] 杨阳, 李祥龙, 杨仁树, 等. 低温岩石冲击破碎分形特征与断口形貌分析[J]. 北京理工大学学报, 2020, 40(6):632 − 639+682.YANG Yang, LI Xianglong, YANG Renshu, et al. Study on fractal characteristics and fracture mechanism of frozen rocks[J]. Transactions of Beijing Institute of Technology, 2020, 40(6):632 − 639+682. (in Chinese) [15] YANG Y, ZHANG N N, WANG J G. A Study on the dynamic strength deterioration mechanism of frozen red sandstone at low temperatures[J]. Minerals, 2021, 11:1300. doi: 10.3390/min11121300 [16] 王建国, 梁书锋, 高全臣, 等. 节理倾角对类岩石冲击能量传递影响的试验研究[J]. 中南大学学报:自然科学版, 2018, 49(5):1237 − 1243.WANG Jianguo, LIANG Shufeng, GAO Quanchen, et al. Experimental study of jointed angles impact on energy transfer characteristics of simulated rock material[J]. Journal of Central South University:Science and Technology, 2018, 49(5):1237 − 1243. (in Chinese) [17] 李洪超, 陈勇, 刘殿书, 等. 岩石RHT模型主要参数敏感性及确定方法研究[J]. 北京理工大学学报, 2018, 38(8):779 − 785.LI Hongchao, CHEN Yong, LIU Dianshu, et al. Sensitivity analysis determination and optimization of rock RHT parameters[J]. Transactions of Beijing Institute of Technology, 2018, 38(8):779 − 785. (in Chinese) [18] 张明涛, 王伟, 张思怡, 等. 冲击荷载作用下灰砂岩破坏过程及损伤数值模拟研究[J]. 爆破, 2020, 37(1):46 − 54. doi: 10.3963/j.issn.1001-487X.2020.01.007ZHANG Mingtao, WANG Wei, ZHANG Siyi, et al. Numerical simulation of failure process and damage of gray sandstone under impact loading[J]. Blasting, 2020, 37(1):46 − 54. (in Chinese) doi: 10.3963/j.issn.1001-487X.2020.01.007 [19] 李祥龙, 张松涛, 李明扬, 等. 基于AUTODYN的岩石中爆炸鼓包运动模拟[J]. 煤炭学报, 2013, 33(12):1220 − 1223.LI Xianglong, ZHANG Songtao, LI Mingyang, et al. Simulation research of AUTODYN-based bulging motion of rock blast[J]. Journal of China Coal Society, 2013, 33(12):1220 − 1223. (in Chinese) [20] 黄永辉, 梁书锋, 刘殿书, 等. 三维SHPB装置设计及原理研究[J]. 北京理工大学学报, 2014, 34(10):1024 − 1027+1033.HUANG Yonghui, LIANG Shufeng, LIU Dianshu, et al. 3D SHPB device experimental design and principle research[J]. Transactions of Beijing Institute of Technology, 2014, 34(10):1024 − 1027+1033. (in Chinese) [21] 李祥龙, 王建国, 张智宇, 等. 应变率及节理倾角对岩石模拟材料动力特性的影响[J]. 爆炸与冲击, 2016, 36(4):483 − 490. doi: 10.11883/1001-1455(2016)04-0483-08LI Xianglong, WANG Jianguo, ZHANG Zhiyu, et al. Experimental study for effects of strain rates and joint angles on dynamic responses of simulated rock materials[J]. Explosion and Shock Waves, 2016, 36(4):483 − 490. (in Chinese) doi: 10.11883/1001-1455(2016)04-0483-08 [22] 柴少波, 王昊, 井彦林, 等. 充填节理岩石累积损伤动力压缩特性试验研究[J]. 岩石力学与工程学报, 2020, 39(10):2025 − 2037.CHAI Shaobo, WANG Hao, JING Yanlin, et al. Experimental study on cumulative damage dynamic compression characteristics of filled jointed rock[J]. Rock Mechanics and Engineering, 2020, 39(10):2025 − 2037. (in Chinese)