Fuel Economy of Lane Changing Trajectory for Intelligent Vehicle
-
摘要: 基于智能汽车行驶的空间约束和运动轨迹曲率约束等限制,对换道轨迹的燃油经济性进行了研究. 基于发动机瞬态油耗模型,确定了平路行驶的最经济车速,并建立了能满足各种约束的3阶贝塞尔换道轨迹模型. 通过Matlab/Simulink与Carsim联合仿真验证,文中设计的贝塞尔换道轨迹的油耗分别比已有的sin-tanh和x-sin换道轨迹节油了3.49%和0.77%,其最大横向加速度值也分别比sin-tanh和x-sin换道轨迹降低了31.75%及7.45%. 因此在保证智能汽车安全舒适行驶的基础上,利用贝塞尔换道轨迹的汽车油耗更少,对应的最大横向加速度更小,表明贝塞尔换道轨迹模型具有优越性.Abstract: In this article, the fuel economy of lane changing trajectories was studied based on the space and trajectory curvature constraints of intelligent vehicle. Based on an engine transient fuel consumption model, the most economical speed for driving on the flat roads was calculated, and the third-order Bezier lane changing trajectory model was established for various constraints. The results of Matlab/Simulink and Carsim co-simulation verification show that, the fuel consumption of the Bezier lane changing trajectory developed in the paper is 3.49% and 0.77% less than the existing sin-tanh and x-sin lane changing trajectories, and its maximum lateral acceleration value is also 31.75% and 7.45% lower than sin-tanh and x-sin lane changing trajectories respectively. Therefore, on the basis of ensuring the safe and comfortable driving of intelligent vehicles, the fuel consumption of vehicle is the least by Bezier lane changing trajectory, and the corresponding maximum lateral acceleration is also the smallest. All those prove the superiority of the Bezier lane-changing trajectory.
-
表 1 换道轨迹经济性比较
Table 1. Economic comparison of lane changing trajectory
换道轨迹 燃油消耗/mL 最大横向加速度/(m·s−2) polynomial 2.781 1.408 Bezier 2.818 1.541 表 2 换道轨迹经济性比较
Table 2. Economic comparison of lane changing trajectory
换道轨迹 燃油消耗/mL 最大横向加速度/(m·s−2) sin-tanh 2.9198 2.258 x-sin 2.8398 1.665 Bezier 2.8180 1.541 -
[1] ZHOU J, ZHENG H, WANG J, et al. Multiobjective optimization of lane-changing strategy for intelligent vehicles in complex driving environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2):1291 − 1308. doi: 10.1109/TVT.2019.2956504 [2] 李玮, 高德芝, 段建民. 智能车辆自由换道模型研究[J]. 公路交通科技, 2010, 27(2):119 − 123. doi: 10.3969/j.issn.1002-0268.2010.02.023LI Wei, GAO Dezhi, DUAN Jianmin. Research on lane change model for intelligent vehicles[J]. Highway Transportation Technology, 2010, 27(2):119 − 123. (in Chinese) doi: 10.3969/j.issn.1002-0268.2010.02.023 [3] ZHANG S, LIU W, LI B, et al. Trajectory planning of overtaking for intelligent vehicle based on x-sin function[C]//Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation, [S. l. ]: IEEE , 2014, 618 − 622. [4] ORGANIZATION of the PETROLEUM EXPORTING COUNTRIES. World Oil Outlook 2016[EB/OL]. [2016-10]. https://www.opec.org/opec_web/static_files_project/media/downloads/publications/WOO%202016.pdf. [5] 金辉, 丁峰, 周敏. 汽车弯道行驶经济性车速优化方法[J]. 北京理工大学学报, 2018, 38(5):493 − 498.JIN Hui, DING Feng, ZHOU Min. Vehicle optimal speed profile when running on curved roads[J]. Transactions of Beijing Institute of Technology, 2018, 38(5):493 − 498. (in Chinese) [6] GUANG H, JIN H. Fuel consumption model optimization based on transient correction[J]. Energy, 2019, 169:508 − 514. doi: 10.1016/j.energy.2018.12.067 [7] ZHOU M, JIN H. Development of a transient fuel consumption model[J]. Transportation Research Part D, 2017, 51:82 − 93. doi: 10.1016/j.trd.2016.12.001 [8] 金辉, 周敏, 李世杰. 基于瞬态修正的车辆燃油消耗模型建模[J]. 北京理工大学学报, 2017, 37(5):473 − 477+484.JIN Hui, ZHOU Min, LI Shijie. Transient fuel consumption modelling based on transient correction[J]. Transaction of Beijing Institute of Technology, 2017, 37(5):473 − 477+484. (in Chinese)