留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图表示的智能车行人意图识别方法

吕超 崔格格 孟相浩 陆军琰 徐优志 龚建伟

吕超, 崔格格, 孟相浩, 陆军琰, 徐优志, 龚建伟. 基于图表示的智能车行人意图识别方法[J]. 机械工程学报, 2022, 42(7): 688-695. doi: 10.15918/j.tbit1001-0645.2021.330
引用本文: 吕超, 崔格格, 孟相浩, 陆军琰, 徐优志, 龚建伟. 基于图表示的智能车行人意图识别方法[J]. 机械工程学报, 2022, 42(7): 688-695. doi: 10.15918/j.tbit1001-0645.2021.330
LÜ Chao, CUI Gege, MENG Xianghao, LU Junyan, XU Youzhi, GONG Jianwei. Graph Representation Method for Pedestrian Intention Recognition of Intelligent Vehicle[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 42(7): 688-695. doi: 10.15918/j.tbit1001-0645.2021.330
Citation: LÜ Chao, CUI Gege, MENG Xianghao, LU Junyan, XU Youzhi, GONG Jianwei. Graph Representation Method for Pedestrian Intention Recognition of Intelligent Vehicle[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 42(7): 688-695. doi: 10.15918/j.tbit1001-0645.2021.330

基于图表示的智能车行人意图识别方法

doi: 10.15918/j.tbit1001-0645.2021.330
基金项目: 国家自然科学基金联合基金项目(U19A2083);国家青年自然科学基金资助项目(61703041);北京理工大学科技创新计划前沿交叉与学科创新专项计划;上海汽车工业科技发展基金公产学研项目
详细信息
    作者简介:

    吕超(1985—),男,博士,副教授,E-mail:chaolu@bit.edu.cn

  • 中图分类号: U495

Graph Representation Method for Pedestrian Intention Recognition of Intelligent Vehicle

  • 摘要: 智能驾驶场景下的人车冲突问题与行人过街行为密切相关,为使高级驾驶辅助系统(advanced driving assistance system, ADAS)具备识别行人过街意图的功能,并对人车碰撞事件预警,提出一种基于图表示学习(graph representation learning, GRL)方法的行人过街意图识别框架。它采用开源工具对行人骨架信息进行识别,采用图方法,以行人在一段运动过程内每一帧的骨架关键点为节点,以骨架自然连接关系、相关关系和时域关系为边建立图模型,实现对行人动作序列的表征。以图结构数据为输入,基于支持向量机(support vector machine, SVM)训练行人过街意图识别模型。在自动驾驶数据集PIE上对所提出方法进行评估,结果显示,行人过街意图分类准确率可达90.29%,所提出方法能够有效识别行人过街意图,对提高智能车决策安全性具有重要意义。

     

  • 图  基于图表示的行人意图识别方法框架

    Figure  1.  Framework of pedestrian intention recognition method based on graph representation

    图  行人时空图模型构建示意图

    Figure  2.  Diagram of the construction of pedestrian spatio-temporal graph model

    图  图核方法内积投影示意图

    Figure  3.  Diagram of inner product projection of kernel method

    图  分类结果混淆矩阵分析图

    Figure  4.  Confusion matrix analysis of classification results

    图  行人过街意图判断结果示例

    Figure  5.  Examples of pedestrian crossing intention classification results

    表  1  行人骨架关键节点定义表

    Table  1.   Definition table of key nodes of pedestrian skeleton

    节点编号原始编号节点名称精度/%
    0134
    16左侧肩关节79
    27右侧肩关节77
    312左侧髋关节81
    413右侧髋关节81
    514左侧膝关节78
    615右侧膝关节77
    716左侧踝关节73
    817右侧踝关节70
    下载: 导出CSV

    表  2  基于图表示方法的行人意图识别模型销蚀实验

    Table  2.   Abation experiments of pedestrian intention recognition model based on graph representation method

    特征准确度/%F1分数/%精确度/%
    pveh_sdGHPKMLGHPKMLGHPKML
    63.2472.3884.3862.3170.0082.6762.3171.0083.00
    71.6273.1487.6271.3370.6786.3371.3374.3386.33
    71.4389.7190.2970.6788.6789.3370.6789.3089.33
    特征回召率/%平均值/%时间/s
    pveh_sdGHPKMLGHPKMLGHPKML
    63.3369.6782.3362.8070.7683.103595710025671
    71.6770.0086.3371.4972.0386.65353409825182
    71.0088.3389.0070.9489.0089.483513412125691
    下载: 导出CSV
  • [1] MUHAMMAD I P, WIWIK A, HANUGRA A S, et al. Early warning pedestrian crossing intention from its head gesture using head pose estimation[C]//International Seminar on Intelligent Technology and Its Applications (ISITIA). Surabaya, Indonesia. IEEE, 2021: 402 − 407.
    [2] RAÚL Q M, IGNACIO P A, DAVID F, et al. Pedestrian path, pose, and intention prediction through Gaussian process dynamical models and pedestrian activity recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5):1803 − 1814.
    [3] FANG Z, VAZQUEZ D, LOPEZ A M. On-board detection of pedestrian intentions[J]. SENSORS. 2017, 17(10): 2193
    [4] FRANCESCO P, RAJARATHNAM B, MARIA J P, et al. FuSSI-net: fusion of Spatio-temporal skeletons for intention prediction network[C]//54th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA: IEEE, 2020: 68 − 72.
    [5] PABLO R G C, MING Y, QIAN Y Q, et al. Pedestrian Graph: Pedestrian crossing prediction based on 2D pose estimation and graph convolutional networks[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand: IEEE, 2019: 2000 − 2005.
    [6] SVEN K, LORENZO B, ALEXANDRE A. PifPaf: composite fields for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 11969 − 11978.
    [7] NEUMANN M, GARNETT R, BAUCKHAGE C, et al. Propagation kernels: efficient graph kernels from propagated information[J]. Machine Learning, 2016, 102(2): 209 − 245.
    [8] KONDOR R, PAN H. The multiscale laplacian graph kernel[C]//30th Conference on Neural Information Processing Systems (NIPS).Barcelona,Spain:Curran Associates,Inc., 2016: 2990 − 2998.
    [9] RASOULI A, KOTSERUBA I, KUNIC T, et al. PIE: a large-scale dataset and models for pedestrian intention estimation and trajectory prediction[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019: 6261 − 6270.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  96
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-03-22
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回