留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于势场法的无人车局部动态避障路径规划算法

翟丽 张雪莹 张闲 王承平

翟丽, 张雪莹, 张闲, 王承平. 基于势场法的无人车局部动态避障路径规划算法[J]. 机械工程学报, 2022, 42(7): 696-705. doi: 10.15918/j.tbit1001-0645.2021.333
引用本文: 翟丽, 张雪莹, 张闲, 王承平. 基于势场法的无人车局部动态避障路径规划算法[J]. 机械工程学报, 2022, 42(7): 696-705. doi: 10.15918/j.tbit1001-0645.2021.333
ZHAI Li, ZHANG Xueying, ZHANG Xian, WANG Chengping. Local Dynamic Obstacle Avoidance Path Planning Algorithm for Unmanned Vehicles Based on Potential Field Method[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 42(7): 696-705. doi: 10.15918/j.tbit1001-0645.2021.333
Citation: ZHAI Li, ZHANG Xueying, ZHANG Xian, WANG Chengping. Local Dynamic Obstacle Avoidance Path Planning Algorithm for Unmanned Vehicles Based on Potential Field Method[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 42(7): 696-705. doi: 10.15918/j.tbit1001-0645.2021.333

基于势场法的无人车局部动态避障路径规划算法

doi: 10.15918/j.tbit1001-0645.2021.333
基金项目: 国家重点研发项目(2017YFB0102400)
详细信息
    作者简介:

    张雪莹:翟丽(1973—),女,教授,E-mail:zhaili26@bit.edu.cn.

    通讯作者:

    张雪莹(1997—),女,硕士生,E-mail:zhangxueying_jlu@163.com.

  • 中图分类号: TP242.6

Local Dynamic Obstacle Avoidance Path Planning Algorithm for Unmanned Vehicles Based on Potential Field Method

  • 摘要: 根据无人车动态实时避障的需求,提出一种基于人工势场法的局部避障路径规划算法,通过改进势场环境及势场力来解决传统势场法局部极小值和目标不可达的问题. 考虑车辆碰撞安全性,对侧向动态障碍物和同向动态障碍物工况进行分析,采用动态窗口法进行实时动态避障规划. 同时为保证规划路径的平滑性和可跟踪性,采用贝塞尔曲线对轨迹进行平滑处理. 最后,在CarSim和Matlab/Simulink 联合仿真平台下,对所提出的控制算法进行验证. 仿真结果表明了规划算法的避障有效性、安全性以及可跟踪性.

     

  • 图  局部极小值工况

    Figure  1.  The local minimum value case

    图  Matlab仿真图

    Figure  2.  Matlab simulation diagram

    图  局部极小值工况

    Figure  3.  local minimum value case when obstacle locates behind target

    图  Matlab仿真图

    Figure  4.  Matlab simulation diagram for obstacle locates behind target

    图  局部极小值工况

    Figure  5.  local minimum value case when 2 obstacles locate between the vehicle and target

    图  Matlab仿真图

    Figure  6.  Matlab simulation diagram for 2 obstacles locate between the vehicle and target

    图  目标不可达工况

    Figure  7.  Target unreachable condition

    图  Matlab仿真图

    Figure  8.  Matlab simulation diagram for target unreachable condition

    图  动态规划示意图

    Figure  9.  Dynamic programming diagram

    图  10  路径平滑示意图

    Figure  10.  Path smoothing diagram

    图  11  侧向避障过程示意图

    Figure  11.  Schematic diagram of the lateral obstacle avoidance process

    图  12  同向避障过程示意图

    Figure  12.  Schematic diagram of the same-direction obstacle avoidance process

    图  13  复杂避障过程示意图

    Figure  13.  Schematic diagram of complex obstacle avoidance process

    图  14  十字路口虚拟道路环境

    Figure  14.  Crossroads virtual road environment

    图  15  传统人工势场法仿真结果(发生碰撞)

    Figure  15.  Simulation results of traditional artificial potential field method (Collision)

    图  16  改进人工势场法仿真结果

    Figure  16.  Improved artificial potential field method simulation results

    表  1  算法仿真实验数据

    Table  1.   Algorithm simulation experimental data

    算法仿真时间/s仿真步长/s规划时间/s规划步长/ms
    传统势场法10.500.051.37286.537
    改进势场法24.753.88447.847
    下载: 导出CSV
  • [1] GARROTE L,PREMEBIDA C,SILVA M ,et al. An RRT-based navigation approach for mobile robot sand automated vehicles[C]//Proceedings of IEEE International Conference on Industrial Informatics. [S. l. ]: IEEE, 2014: 326 − 331.
    [2] 张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报, 2019, 40(3):228 − 238.

    ZHANG Jing, HE You, PENG Yingning, et al. Collaborative game path planning based on neural network and artificial potential field[J]. Aeronautical Journal, 2019, 40(3):228 − 238. (in Chinese)
    [3] LU Bing, LI Guofa, YU Huilong, et al. A daptive potential field-based path planning for complex autonomous driving scenarios[J]. IEEE Access, 2020(8):225294 − 225305.
    [4] YADOLLAH R, AMIR K, BAKHTIAR L, et al. A potential field-based model predictive path-planning controller for autonomous road vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5):1255 − 1267. doi: 10.1109/TITS.2016.2604240
    [5] 郭枭鹏. 基于改进人工势场法的路径规划算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    GUO Xiaopeng. Research on path planning algorithm based on improved artificial potential field method [D]. Harbin : Harbin Institute of Technology, 2017. (in Chinese)
    [6] 陈相茹. 基于人工势场理论的车辆行驶路径建模研究[D]. 吉林: 吉林大学, 2021.

    CHEN Xiangru. Research on vehicle travel path modeling based on artificial potential field theory[D]. Jilin : Jilin University , 2021. (in Chinese)
    [7] 赵明, 郑泽宇, 潘怡君, 等. 基于改进人工势场法的移动机器人路径规划方法[J]. 计算机应用研究, 2020, 37:66 − 72.

    ZHAO Ming, ZHENG Zeyu, PAN Yijun, et al. Path planning method of mobile robot based on improved artificial potential field method[J]. Application Research of Computers, 2020, 37:66 − 72. (in Chinese)
    [8] 韩宇洪. 基于改进人工势场法的无人车避障路径规划研究[D]. 重庆: 重庆理工大学, 2020.

    HAN Yuhong. Research on obstacle avoidance path planning for unmanned vehicles based on improved artificial potential field method[D]. Chongqing : Chongqing University of Technology, 2020. (in Chinese)
    [9] 陈冠星, 张志安, 华洪, 等. 改进人工势场法在未知环境中的路径规划研究[J]. 机械与电子, 2021, 39(5):7.

    CHEN Guanxing, ZHANG Anhua, HUA Hong, et al. Research on path planning of improved artificial potential field method in unknown environment[J]. Mechanics and Electronics, 2021, 39(5):7. (in Chinese)
    [10] 张涌, 黄林雄, 张煜, 等. 基于人工势场法的智能车辆动态避障研究[J]. 交通运输, 2020(5):87 − 92.

    ZHANG Yong, HUANG Linxiong, ZHANG Yu, et al. Research on intelligent vehicle dynamic obstacle avoidance based on artificial potential field method[J]. Transportation, 2020(5):87 − 92. (in Chinese)
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  192
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回