[1] |
徐晓建, 邓子辰. 基于简化的应变梯度理论下Kirchhoff 板模型边值问题的提法及其应用[J].应用数学和力学, 2022,43(4): 363-373.(XU Xiaojian, DENG Zichen. Boundary value problems of a Kirchhoff type plate model based on the simplified strain gradient elasticity and the application[J].Applied Mathematics and Mechanics,2022,43(4):363-373.(in Chinese))
|
[2]王奇, 朱寅鑫, 牛培行, 等. 柔性扑翼翼型的气动性能仿真分析[J].应用数学和力学, 2022,43(5): 586-596.(WANG Qi, ZHU Yinxin, NIU Peixing, et al. Simulation of aerodynamic performances of flexible flapping wing airfoils[J].Applied Mathematics and Mechanics,2022,43(5): 586-596.(in Chinese))
|
[3]LOVE A E H.A Treatise on the Mathematical Theory of Elasticity[M].4th ed. Dover, New York, 1927.
|
[4]刘延柱. 弹性细杆的非线性力学: DNA力学模型的理论基础[M].北京: 清华大学出版社, 2006.( LIU Yanzhu.Nonlinear Mechanics of Thin Elastic Rod: Theoretical Basis of Mechanical Model of DNA[M].Beijing: Tsinghua University Press, 2006.(in Chinese))
|
[5]COLEMAN B, SWIGON D. Theory of self-contact in Kirchhoff rods with applications to supercoiling of knotted and unknotted DNA plasmids[J].Philosophical Transactions: Mathematical, Physical and Engineering Sciences,2004,362(1820): 1281-1299.
|
[6]薛纭, 刘延柱, 陈立群. 超细长弹性杆的分析力学问题[J].力学学报, 2005,37(4): 485-493.(XUE Yun, LIU Yanzhu, CHEN Liqun. On analytical mechanics for a super-thin elastic rod[J].Chinese Journal of Theoretical and Applied Mechanics,2005,37(4): 485-493.(in Chinese))
|
[7]XUE Yun, SHANG Huilin. Jourdain principle of a super-thin elastic rod dynamics[J].Chinese Physics Letters,2009,26(7): 074501.
|
[8]薛纭, 曲佳乐, 陈立群. Cosserat生长弹性杆动力学的Gauss最小拘束原理[J].应用数学和力学, 2015,36(7): 700-709.(XUE Yun, QU Jiale, CHEN Liqun. Gauss principle of least constraint for Cosserat growing elastic rod dynamics[J].Applied Mathematics and Mechanics,2015,36(7): 700-709.(in Chinese))
|
[9]WANG P, XUE Y, LIU Y L. Noether symmetry and conserved quantities of analytical dynamics of a Cosserat thin elastic rod[J].Chinese Physics B,2013,22(10): 104503-6.
|
[10]薛纭, 陈立群, 刘延柱. Kirchhoff方程的相对常值特解及其Lyapunov稳定性[J].物理学报, 2004,53(12): 4029-4036.(XUE Yun, CHEN Liqun, LIU Yanzhu. Special solutions of Kirchhoff equations and their Lyapunov stability[J].Acta Physica Sinica,2004,〖STHZ〗 53(12): 4029-4036.(in Chinese)
|
[11]刘延柱, 薛纭. 基于精确Cosserat模型的螺旋杆稳定性分析[J].应用数学和力学, 2011,32(5): 570-578.(LIU Yanzhu, XUE Yun. Stability analysis of a helical rod based on exact Cosserat’s model[J].Applied Mathematics and Mechanics,2011,32(5): 570-578.(in Chinese))
|
[12]LEUNG A Y T, KUANG J L, LIM C W, et al. Spatial chaos of buckled elastica by the Kirchhoff analogy of a gyrostat[J].Computers & Structures,2005,83(28/30): 2395-2413.
|
[13]陈至达. 杆、板、壳大变形理论[M].北京: 科学出版社, 1994: 106.(CHEN Zhida.Rod, Plate, Shell Large Deformation Theory[M].Beijing: Science Press, 1994: 106.(in Chinese))
|
[14]薛纭, 陈立群. Kirchhoff动力学比拟对弹性薄壳的推广[J].力学学报, 2021,53(1): 234-247.(XUE Yun, CHEN Liqun. Generalization of Kirchhoff kinetic analogy to thin elastic shells[J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(1): 234-247.(in Chinese))
|
[15]吴大任. 微分几何讲义[M].北京: 高等教育出版社, 1959.(WU Daren.Differential Geometry Lecture Notes[M].Beijing: Higher Education Press, 1959.(in Chinese))
|
[16]CAO D Q, TUCKER R W. Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation[J].International Journal of Solids and Structures,2008,45(2): 460-477.
|
[17]刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算[J].力学学报, 2021,53(1): 213-233.(LIU Cheng, HU Haiyan. Dynamic modeling and computation for flexible multibody systems based on the local frame of Lie group[J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(1): 213-233.(in Chinese))
|
[18]刘延柱. 高等动力学[M].2版. 北京: 高等教育出版社, 2016.(LIU Yanzhu.Advanced Dynamics[M].2nd ed. Beijing: Higher Education Press, 2016.(in Chinese))
|
[19]王桢, 丁洁玉. 多刚体系统动力学方向矢量模型及多步块数值方法[J].应用数学和力学, 2020,41(12): 1323-1335.(WANG Zhen, DING Jieyu. A multibody system dynamics vector model and the multistep block nemerical method[J].Applied Mathematics and Mechanics,2020,41(12): 1323-1335.(in Chinese))
|
[20]关玉铭, 戈新生. 基于非约束模态的中心刚体-Timoshenko梁动力学建模与分析[J].应用数学和力学, 2022,43(2): 156-165.(GUAN Yuming, GE Xinsheng. Dynamic modeling and analysis of the central rigid body-Timoshenko beam model based on unconstrained modes[J].Applied Mathematics and Mechanics,2022,43(2): 156-165.(in Chinese))
|