留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刚-液耦合航天器系统的Hamilton结构及稳定性分析

易中贵 岳宝增 刘峰 卢涛 邓明乐

易中贵, 岳宝增, 刘峰, 卢涛, 邓明乐. 刚-液耦合航天器系统的Hamilton结构及稳定性分析[J]. 机械工程学报, 2023, 44(5): 499-512. doi: 10.21656/1000-0887.430379
引用本文: 易中贵, 岳宝增, 刘峰, 卢涛, 邓明乐. 刚-液耦合航天器系统的Hamilton结构及稳定性分析[J]. 机械工程学报, 2023, 44(5): 499-512. doi: 10.21656/1000-0887.430379
YI Zhonggui, YUE Baozeng, LIU Feng, LU Tao, DENG Mingle. Hamiltonian Structures and Stability Analysis for Rigid-Liquid Coupled Spacecraft Systems[J]. JOURNAL OF MECHANICAL ENGINEERING, 2023, 44(5): 499-512. doi: 10.21656/1000-0887.430379
Citation: YI Zhonggui, YUE Baozeng, LIU Feng, LU Tao, DENG Mingle. Hamiltonian Structures and Stability Analysis for Rigid-Liquid Coupled Spacecraft Systems[J]. JOURNAL OF MECHANICAL ENGINEERING, 2023, 44(5): 499-512. doi: 10.21656/1000-0887.430379

刚-液耦合航天器系统的Hamilton结构及稳定性分析

doi: 10.21656/1000-0887.430379
基金项目: 

国家国防科技工业局民用航天“十三五”技术预先研究项目(D020201)

国家自然科学基金(重点项目)(12132002)

国家自然科学基金(面上项目)(11772049)

国家自然科学基金青年科学基金项目(12202044)

详细信息
    作者简介:

    易中贵(1989—),男,博士(E-mail: yhcqyzg@sina.com);岳宝增(1962—),男,教授,博士(通讯作者. E-mail: bzyue@bit.edu.cn).

    通讯作者:

    岳宝增(1962—),男,教授,博士(通讯作者. E-mail: bzyue@bit.edu.cn).

  • 中图分类号: O302

Hamiltonian Structures and Stability Analysis for Rigid-Liquid Coupled Spacecraft Systems

Funds: 

The National Natural Science Foundation of China(12132002,11772049)

  • 摘要: 该文采用3D刚体摆来等效推进剂的非线性晃动行为.由此研究了该刚-液耦合航天器系统的Hamilton结构,介绍了系统的R3约化(对应系统的平移不变性或总线动量不变性)以及So(3)约化(对应系统的旋转不变性或总角动量不变性),并推导了系统在约化空间s*o(3)×s*o(3)×So(3)上的约化Poisson括号.接着研究了刚-液耦合航天器系统的自旋稳定性特征,先根据对称临界原理推导了刚-液耦合航天器系统的相对平衡态,由此根据能量-动量方法与分块对角化技术,推导了系统的自旋稳定性条件和Arnold形式的稳定性边界.最后根据具体模型参数,给出了以图形方式展现的自旋稳定域.

     

  • [1] DODGE F T. The new “dynamic behavior of liquids in moving containers”[R]. San Antonio, TX, USA: Southwest Research Institute, 2000.
    [2]IBRAHIM R A.Liquid Sloshing Dynamics: Theory and Applications[M]. Cambridge: Cambridge University Press, 2005.
    [3]KANA D D. Validated spherical pendulum model for rotary liquid slosh[J].Journal of Spacecraft and Rockets,1989,26(3): 188-195.
    [4]KANG J Y, LEE S. Attitude acquisition of a satellite with a partially filled liquid tank[J].Journal of Guidance, Control, and Dynamics,2008,31(3): 790-793.
    [5]MIAO N, LI J F, WANG T S. Equivalent mechanical model of large-amplitude liquid sloshing under time-dependent lateral excitations in low-gravity conditions[J].Journal of Sound and Vibration,2017,386: 421-432.
    [6]YUE B Z. Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft[J]. AIAA Journal,2011,49(10): 2090-2099.
    [7]邓明乐. 液体大幅晃动等效力学模型及航天器刚-液-柔-控耦合动力学研究[D]. 博士学位论文. 北京: 北京理工大学, 2017.(DENG Mingle. Studies on the equivalent mechanical model of large amplitude liquid slosh and rigid-liquid-flex-control coupling dynamics of spacecraft[D]. PhD Thesis. Beijing: Beijing Institute of Technology, 2017.(in Chinese))
    [8]TANG Y, YUE B Z. Simulation of large-amplitude three-dimensional liquid sloshing in spherical tanks[J].AIAA Journal,2017,55(6): 2052-2059.
    [9]刘峰. 液体非线性晃动类柔性航天器大范围运动动力学与姿态控制研究[D]. 博士学位论文. 北京: 北京理工大学, 2020.(LIU Feng. Studies on large motion dynamics and attitude control of flexible spacecraft with nonlinear liquid slosh[D]. PhD Thesis. Beijing: Beijing Institute of Technology, 2020.(in Chinese))
    [10]LIU F, YUE B Z, TANG Y, et al. 3DOF-rigid-pendulum analogy for nonlinear liquid slosh in spherical propellant tanks[J]. Journal of Sound and Vibration,2019,460: 114907.
    [11]ABRAHAM R, MARSDEN J E.Foundations of Mechanics[M]. New York: Addison-Wesley, 1978.
    [12]MARSDEN J E, RATIU T S.Introduction to Mechanics and Symmetry: a Basic Exposition of Classical Mechanical Systems[M]. New York: Springer, 1998.
    [13]HOLM D D, MARSDEN J E, RATIU T, et al. Nonlinear stability of fluid and plasma equilibria[J].Physics Reports,1985,123(1/2): 1-116.
    [14]KRISHNAPRASAD P S, MARSDEN J E. Hamiltonian structures and stability for rigid bodies with flexible attachments[J].Archive for Rational Mechanics and Analysis,1987,98(1): 71-93.
    [15]OZKAZANC Y. Dynamics and stability of spacecraft with fluid-filled containers[D]. PhD Thesis. MD, USA: University of Maryland, 1994.
    [16]ARDAKANI H A, BRIDGES T J, GAY-BALMAZ F, et al. A variational principle for fluid sloshing with vorticity, dynamically coupled to vessel motion[J].Proceedings of the Royal Society A,2019,475(2224): 20180642.
    [17]GASBARRI P, SABATINI M, PISCULLI A. Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh[J].Acta Astronautica,2016,127: 141-159.
    [18]SALMAN A, YUE B Z. Bifurcation and stability analysis of the Hamiltonian-Casimir model of liquid sloshing[J].Chinese Physics Letters,2012,29(6): 060501.
    [19]闫玉龙. 航天器刚液柔耦合动力学及姿态稳定性研究[D]. 博士学位论文. 北京: 北京理工大学, 2017.(YAN Yulong. Study on dynamics and attitude stability of the rigid-liquid-flex coupling spacecraft system[D]. PhD Thesis. Beijing: Beijing Institute of Technology, 2017.(in Chinese))
    [20]SIMO J C, POSBERGH T A, MARSDEN J E. Stability of coupled rigid body and geometrically exact rods: block diagonalization and the energy-momentum method[J].Physics Reports,1990,193(6): 279-360.
    [21]SIMO J C, LEWIS D, MARSDEN J E. Stability of relative equilibria, part Ⅰ: the reduced energy-momentum method[J].Archive for Rational Mechanics and Analysis,1991,115(1): 15-59.
    [22]SIMO J C, POSBERGH T A, MARSDEN J E. Stability of relative equilibria, part Ⅱ: application to nonlinear elasticity[J].Archive for Rational Mechanics and Analysis,1991,115(1): 61-100.
    [23]YI Z G, YUE B Z. Study on the dynamics, relative equilibria, and stability for liquid-filled spacecraft with flexible appendage[J].Acta Mechanica,2022,233(9): 3557-3578.
    [24]ABRAMSON H N. The dynamic behavior of liquids in moving containers, with applications to space vehicle technology:NASA-SP-106[R]. San Antonio, TX, USA: Southwest Research Institute, 1966.
    [25]GROSSMAN R, KRISHNAPRASAD P S, MARSDEN J E. The dynamics of two coupled rigid bodies[J].Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits,1987,1988: 373-378.
    [26]KRISHNAPRASAD P. Lie-Poisson structures, dual-spin spacecraft and asymptotic stability[J].Nonlinear Analysis: Theory, Methods & Applications,1985,9(10): 1011-1035.
    [27]OH Y G, SREENATH N, KRISHNAPRASAD P, et al. The dynamics of coupled planar rigid bodies Ⅱ: bifurcations, periodic solutions, and chaos[J].Journal of Dynamics and Differential Equations,1989,1(3): 269-298.
    [28]SREENATH N, OH Y G, KRISHNAPRASAD P, et al. The dynamics of coupled planar rigid bodies, part Ⅰ: reduction, equilibria and stability[J].Dynamics and Stability of Systems,1988,3(1/2): 25-49.
    [29]WANG LISHENG, KRISHNAPRASAD P S. Gyroscopic control and stabilization[J].Journal of Nonlinear Science,1992,2(4): 367-415.
    [30]GE X S , YI Z G , CHEN L Q. Optimal control of attitude for coupled-rigid-body spacecraft via Chebyshev-Gauss pseudospectral method[J].Applied Mathematics and Mechanics,2017,38(9): 1257-1272.
    [31]MARSDEN J E, WEINSTEIN A. Reduction of symplectic manifolds with symmetry[J].Reports on Mathematical Physics,1974,5(1): 121-130.
    [32]MARSDEN J E, RATIU T. Reduction of Poisson manifolds[J].Letters in Mathematical Physics,1986,11(2): 161-169.
    [33]易中贵. 几何力学建模和谱方法离散及航天工程应用[D]. 博士学位论文. 北京: 北京理工大学, 2022.(YI Zhonggui. Geometric mechanics modeling and spectral methods discretization and aerospace engineering applications[D]. PhD Thesis. Beijing: Beijing Institute of Technology, 2022.(in Chinese))
    [34]SHI D H, ZENKOV D V, BLOCH A M. Hamel’s formalism for classical field theories[J].Journal of Nonlinear Science,2020,30(1): 1307-1353.
    [35]SIMO J C, MARSDEN J E, KRISHNAPRASAD P. The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates[J].Archive for Rational Mechanics and Analysis,1988,104(2): 125-183.
    [36]POSBERGH T A, KRISHNAPRASAD P S, MARSDEN J E. Stability analysis of a rigid body with a flexible attachment using the energy-Casimir method: SRC-TR-87-23[R]. MD, USA: University of Maryland, 1987.
    [37]YI Z G, YUE B Z, DENG M. Hamilton-Pontryagin spectral-collocation methods for the orbit propagation[J]. Acta Mechanica Sinica,2021,37(11): 1698-1715.
    [38]冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州: 浙江科学技术出版社, 2003.(FENG Kang, QIN Mengzhao.SymplecticGeometric Algorithms for Hamiltonian Systems[M]. Hangzhou: Zhejiang Science and Technology Press, 2003.(in Chinese))
    [39]高山, 史东华, 郭永新. Hamel 框架下几何精确梁的离散动量守恒律[J]. 力学学报, 2021,53(6): 1712-1719.(GAO Shan, SHI Donghua, GUO Yongxin. Discrete momentum conservation law of geometrically exact beam in Hamel’s framework[J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(6): 1712-1719.(in Chinese))
    [40]满淑敏, 高强, 钟万勰. 非完整约束Hamilton动力系统保结构算法[J]. 应用数学和力学, 2020,41(6): 581-590.(MAN Shumin, GAO Qiang, ZHONG Wanxie. A structure-preserving algorithm for Hamiltonian systems with nonholonomic constraints[J].Applied Mathematics and Mechanics,2020,41(6): 581-590.(in Chinese))
    [41]刘晓梅, 周钢, 朱帅. Hamilton系统下基于相位误差的精细辛算法[J]. 应用数学和力学, 2019,40(6): 595-608.(LIU Xiaomei, ZHOU Gang, ZHU Shuai. A highly precise symplectic direct integration method based on phase errors for Hamiltonian systems[J].Applied Mathematics and Mechanics,2019,40(6): 595-608.(in Chinese))
    [42]张素英, 邓子辰. Poisson流形上广义Hamilton系统的保结构算法[J]. 西北工业大学学报, 2002,20(4): 625-628.(ZHANG Suying, DENG Zichen. An algorithm for preserving the generalized Poisson bracket structure of generalized Hamiltonian system[J].Journal of Northwestern Polytechnical University,2002,20(4): 625-628.(in Chinese))
  • 加载中
计量
  • 文章访问数:  51
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-08-12
  • 网络出版日期:  2023-05-31

目录

    /

    返回文章
    返回