Regulatory effects and signaling mechanism of sodium ferulate on the proliferation and apoptosis of human skin hypertrophic scar fibroblasts
-
摘要:目的 探讨阿魏酸钠对人皮肤增生性瘢痕成纤维细胞(HSFb)增殖、凋亡的调控作用和信号机制。方法 采用实验研究方法。取第4~6代人皮肤HSFb用于后续实验。将HSFb分别与终质量浓度1、1×10-1、1×10-2、1×10-3、1×10-4、1×10-5、1×10-6 mg/mL阿魏酸钠共培养48 h,采用噻唑蓝法测定细胞吸光度值并采用线性回归法分析阿魏酸钠的半数致死浓度(LC50),样本数为6。将HSFb分别与终质量浓度0.1、0.2、0.3、0.4 mg/mL的阿魏酸钠共培养24、48、72、96 h后,采用噻唑蓝法测定细胞吸光度值并计算细胞增殖抑制率(样本数为3)。取细胞,按随机数字表法分为采用相应终质量浓度阿魏酸钠处理的0.300 mg/mL阿魏酸钠组、0.030 mg/mL阿魏酸钠组、0.003 mg/mL阿魏酸钠组和不进行任何处理的阴性对照组。培养72 h后,采用噻唑蓝法测定细胞吸光度值(样本数为5),采用透射电子显微镜观察细胞微观形态(样本数为3),采用原位末端标记(TUNEL)法检测细胞凋亡情况并计算凋亡指数(样本数为4),采用免疫组织化学法检测B淋巴细胞瘤-2(Bcl-2)、Bcl-2相关X蛋白(Bax)、胱天蛋白酶3(caspase-3)蛋白表达(样本数为4),采用蛋白质印迹法检测转化生长因子β1(TGF-β1)、磷酸化Smad2/3、磷酸化Smad4、磷酸化Smad7的蛋白表达(样本数为4)。对数据行单因素方差分析、Dunnett检验。结果 阿魏酸钠的LC50为0.307 5 mg/mL。培养24~96 h,4个质量浓度阿魏酸钠处理的细胞增殖抑制率均呈先升高后降低的趋势,于培养72 h达到最高,选择72 h作为后续实验的处理时间。培养72 h后,0.003 mg/mL阿魏酸钠组、0.030 mg/mL阿魏酸钠组、0.300 mg/mL阿魏酸钠组细胞吸光度值分别为0.57±0.06、0.53±0.04、0.45±0.05,均明显低于阴性对照组的0.69±0.06(P<0. 01)。培养72 h后,与阴性对照组比较,用阿魏酸钠处理的3组细胞出现不同程度的核固缩或断裂、裂解,染色质丢失,胞质中可见线粒体肿胀、粗面内质网扩张,局部逐渐空泡化。培养72 h后,与阴性对照组比较,0.003 mg/mL阿魏酸钠组、0.030 mg/mL阿魏酸钠组、0.300 mg/mL阿魏酸钠组细胞凋亡指数均显著升高(P<0. 05或P<0. 01)。培养72 h后,与阴性对照组比较,0.300 mg/mL阿魏酸钠组细胞Bcl-2蛋白表达量明显减少(P<0. 01),0.030 mg/mL阿魏酸钠组、0.300 mg/mL阿魏酸钠组细胞Bax蛋白表达量均明显增加(P<0. 05),0.300 mg/mL阿魏酸钠组细胞caspase-3蛋白表达量显著增加(P<0.01)。培养72 h后,与阴性对照组比较,0.030 mg/mL阿魏酸钠组、0.300 mg/mL阿魏酸钠组细胞TGF-β1、磷酸化Smad2/3、磷酸化Smad4蛋白表达量均明显减少(P<0. 05或P<0. 01),0.003 mg/mL阿魏酸钠组、0.030 mg/mL阿魏酸钠组、0.300 mg/mL阿魏酸钠组细胞磷酸化Smad7蛋白表达量均显著增加(P<0.01)。结论 阿魏酸钠可通过阻断TGF-β/Smad信号通路上的关键蛋白的表达,协同激活线粒体凋亡途径共同发挥抑制人皮肤HSFb增殖和促进人皮肤HSFb凋亡的作用。Abstract:Objective To investigate the regulatory effects and signaling mechanism of sodium ferulate on the proliferation and apoptosis of human skin hypertrophic scar fibroblasts (HSFbs).Methods The experimental research methods were used. The 4th-6th passage of HSFbs from human skin were used for the following experiments. HSFbs were co-cultured with sodium ferulate at final mass concentrations of 1, 1×10-1, 1×10-2, 1×10-3, 1×10-4, 1×10-5, and 1×10-6 mg/mL for 48 hours, and methyl thiazolyl tetrazolium method was used to determine the cell absorbance values and linear regression was used to analyze the half lethal concentration (LC50) of sodium ferulate (n=6). HSFbs were co-cultured with sodium ferulate at final mass concentrations of 0.1, 0.2, 0.3, and 0.4 mg/mL for 24, 48, 72, and 96 hours, and methyl thiazolyl tetrazolium method was used to determine the cell absorbance values and the cell proliferation inhibition rate was calculated (n=3). According to the random number table, the cells were divided into 0.300 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, 0.003 mg/mL sodium ferulate group treated with sodium ferulate at corresponding final mass concentrations, and negative control group without any treatment. After 72 hours of culture, the cell absorbance values were determined by methyl thiazolyl tetrazolium method (n=5), the microscopic morphology of cells was observed by transmission electron microscope (n=3), the cell apoptosis was detected by TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay and the apoptosis index was calculated (n=4), the protein expressions of B lymphocystoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and cysteine aspartic acid specific protease-3 (caspase-3) were determined by immunohistochemistry (n=4), and the protein expressions of transformed growth factor β1 (TGF-β1), phosphorylated Smad2/3, phosphorylated Smad4, and phosphorylated Smad7 were detected by Western blotting (n=4). Data were statistically analyzed with one-way analysis of variance and Dunnett test.Results The LC50 of sodium ferulate was 0.307 5 mg/mL. After being cultured for 24-96 hours, the cell proliferation inhibition rates of cells treated with sodium ferulate at four different mass concentrations tended to increase at first but decrease later, which reached the highest after 72 hours of culture, so 72 hours was chosen as the processing time for the subsequent experiments. After 72 hours of culture, the cell absorbance values in 0.003 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, and 0.300 mg/mL sodium ferulate group were 0.57±0.06, 0.53±0.04, 0.45±0.05, respectively, which were significantly lower than 0.69±0.06 in negative control group (P<0.01). After 72 hours of culture, compared with those in negative control group, the cells in the three groups treated with sodium ferulate showed varying degrees of nuclear pyknosis, fracture, or lysis, and chromatin loss. In the cytoplasm, mitochondria were swollen, the rough endoplasmic reticulum was expanded, and local vacuolation gradually appeared. After 72 hours of culture, compared with that in negative control group, the apoptosis indexes of cells were increased significantly in 0.003 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, and 0.300 mg/mL sodium ferulate group (P<0.05 or P<0.01). After 72 hours of culture, compared with those in negative control group, the protein expressions of Bcl-2 of cells in 0.300 mg/mL sodium ferulate group was significantly decreased (P<0.01), the protein expressions of Bax of cells in 0.030 mg/mL sodium ferulate group and 0.300 mg/mL sodium ferulate group were significantly increased (P<0.05), and the protein expression of caspase-3 of cells in 0.300 mg/mL sodium ferulate group was significantly increased (P<0.01). After 72 hours of culture, compared with those in negative control group, the protein expression levels of TGF-β1, phosphorylated Smad2/3, and phosphorylated Smad4 of cells in 0.030 mg/mL sodium ferulate group and 0.300 mg/mL sodium ferulate group were significantly decreased (P<0.05 or P<0.01), and the protein expression levels of phosphorylated Smad7 of cells in 0.003 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, and 0.300 mg/mL sodium ferulate group were significantly increased (P<0.01).Conclusions Sodium ferulate can inhibit the proliferation of HSFbs of human skin and promote the apoptosis of HSFbs of human skin by blocking the expression of key proteins on the TGF-β/Smad signaling pathway and synergistically activating the mitochon- drial apoptosis pathway.
-
6 4组人皮肤增生性瘢痕成纤维细胞培养72 h后凋亡相关蛋白表达 二氨基联苯胺-苏木精×200,图中标尺为100 μm。6A、6B、6C、6D.分别为阴性对照组、0.003 mg/mL阿魏酸钠组、0.030 mg/mL阿魏酸钠组、0.300 mg/mL阿魏酸钠组Bcl-2蛋白表达,图6B、6C中Bcl-2蛋白表达均与图6A相近,图6D中Bcl-2蛋白表达较图6A明显减少;6E、6F、6G、6H.分别为阴性对照组、0.003 mg/mL阿魏酸钠组、0.030 mg/mL阿魏酸钠组、0.300 mg/mL阿魏酸钠组Bax蛋白表达,图6F中Bax蛋白表达与图6E相近,图6G、6H中Bax蛋白表达均较图6E明显增加;6I、6J、6K、6L.分别为阴性对照组、0.003 mg/mL阿魏酸钠组、0.030 mg/mL阿魏酸钠组、0.300 mg/mL阿魏酸钠组caspase-3蛋白表达,图6J、6K中caspase-3蛋白表达均与图6I相近,图6L中caspase-3蛋白表达较图6I明显增加
注:细胞核染色为棕色或棕黄色示B淋巴细胞瘤-2(Bcl-2)阳性表达,细胞质染色为棕色或棕黄色示Bcl-2相关X蛋白(Bax)、胱天蛋白酶3 (caspase-3)阳性表达
表1 4组人皮肤增生性瘢痕成纤维细胞培养72 h后凋亡相关蛋白表达量比较(
) 组别 样本数 Bcl-2 Bax caspase-3 阴性对照组 4 0.157 1±0.002 3 0.214±0.010 0.152 8±0.002 7 0.003 mg/mL阿魏酸钠组 4 0.154 2±0.002 8 0.214±0.007 0.155 1±0.002 3 0.030 mg/mL阿魏酸钠组 4 0.154 8±0.002 7 0.230±0.006b 0.159 2±0.005 8 0.300 mg/mL阿魏酸钠组 4 0.149 9±0.002 6a 0.237±0.012b 0.163 8±0.001 2a F值 5.28 6.80 7.81 P值 0.015 0.006 0.004 注:Bcl-2为B淋巴细胞瘤-2,Bax为 Bcl-2相关X蛋白,caspase-3为胱天蛋白酶3;与阴性对照组比较, aP<0.01,bP<0.05 表2 4组人皮肤增生性瘢痕成纤维细胞培养72 h后TGF-β/Smad信号通路蛋白表达比较(
) 组别 样本数 TGF-β1 磷酸化Smad2/3 磷酸化Smad4 磷酸化Smad7 阴性对照组 4 1.00 1.00 1.00 1.00 0.003 mg/mL阿魏酸钠组 4 0.93±0.07 0.97±0.03 0.98±0.06 1.24±0.06b 0.030 mg/mL阿魏酸钠组 4 0.84±0.07a 0.89±0.03b 0.86±0.10a 1.22±0.03b 0.300 mg/mL阿魏酸钠组 4 0.82±0.06b 0.85±0.07b 0.81±0.07 a 1.17±0.04b F值 8.36 10.79 7.74 34.89 P值 0.003 0.001 0.004 <0.001 注:TGF-β1为转化生长因子β1;与阴性对照组比较,aP<0.05,bP<0.01 2022年1期 烧伤缺血缺氧性损害与休克的防治 组稿专家:申传安(已组稿完成) 2022年2期 烧伤后炎症与免疫 组稿专家:孙炳伟、贺伟峰(已组稿完成) 2022年3期 烧伤感染、脓毒症 组稿专家:姚咏明、袁志强(已组稿完成) 2022年4期 扩张术与瘢痕修复 组稿专家:马显杰(已组稿完成) 2022年5期 烧伤后脏器功能损害 组稿专家:郇京宁(已组稿完成) 2022年6期 特殊原因创面(冻伤、自身免疫病创面等) 组稿专家:于家傲(已组稿完成) 2022年7期 生长因子调控创面修复 组稿专家:肖健 2022年8期 烧伤营养 组稿专家:韩春茂 2022年9期 瘢痕的光电治疗 组稿专家:章一新 2022年10期 生物材料在创面修复中的应用 组稿专家:罗高兴 2022年11期 创面修复中的细胞与干细胞治疗 组稿专家:史春梦 2022年12期 烧伤康复 组稿专家:谢卫国 -
[1] YangSW,GengZJ,MaK,et al.Comparison of the histological morphology between normal skin and scar tissue[J].J Huazhong Univ Sci Technolog Med Sci,2016,36(2):265-269.DOI: 10.1007/s11596-016-1578-7. [2] 孟艳斌,雷晋,张海瑞,等.原位保留打孔断层瘢痕基质联合头皮移植与负压封闭引流治疗烧伤后非功能部位增生性瘢痕的临床效果[J].中华烧伤与创面修复杂志,2022,38(3):251-255.DOI: 10.3760/cma.j.cn501120-20201201-00510. [3] SeokJ,HongJY,JangJH,et al.The NEEDLELESS MICROJET: a novel device for hypertrophic scar remodelling on the forehead[J].J Eur Acad Dermatol Venereol,2016,30(11):e145-e146.DOI: 10.1111/jdv.13458. [4] FuX, DongJ, WangS,et al.Advances in the treatment of traumatic scars with laser, intense pulsed light, radiofrequency, and ultrasound[J/OL].Burns Trauma, 2019,7:1[2022-04-21]. https://pubmed.ncbi.nlm.nih.gov/30723753/. DOI: 10.1186/s41038-018-0141-0. [5] 管志强,陈桂升,封乐驰,等.基于文献研究分析中医药治疗病理性瘢痕的用药规律[J].中华中医药学刊,2018,36(8):1803-1805.DOI: 10.13193/j.issn.1673-7717.2018.08.002. [6] 王立霞,王枫,陈欣,等.阿魏酸钠的心脑血管药理作用研究进展[J].中草药,2019,50(3):772-777. [7] 杨莹,江军.阿魏酸钠联合阿托伐他汀对糖尿病肾病患者临床疗效及肾间质纤维化指标的影响研究[J].四川医学,2018,39(8):888-891.DOI: 10.16252/j.cnki.issn1004-0501-2018.08.013. [8] 张志毕,蔡婷,缪紫娥,等.阿魏酸钠对乙醛诱导的肝星状细胞增殖、活化和胶原合成的影响[J].中国实验方剂学杂志,2018,24(12):123-128.DOI: 10.13422/j.cnki.syfjx.20181132. [9] 李梦芸,刘德伍.病理性瘢痕的研究和治疗现状[J].实用皮肤病学杂志,2017,10(3):161-165. DOI: 10.11786/sypfbxzz.1674-1293.20170310. [10] 况菊,魏小林,谢敏.阿魏酸钠对NALP3炎性复合体的调节及在肺纤维化中的作用[J].四川大学学报(医学版),2017,48(4):503-508. [11] 晋小荣,高永翔,朱苗苗,等.川青软膏对兔耳增生性瘢痕的影响及机制研究[J].辽宁中医杂志,2018,45(3):617-620,后插6.DOI: 10.13192/j.issn.1000-1719.2018.03.051. [12] 尚颖,赵丽丽,席雯,等.成人真皮成纤维细胞原代培养及鉴定[J].细胞与分子免疫学杂志,2018,34(9):824-828. [13] 李翠萍,吴民耀,王宏元.3种半数致死浓度计算方法之比较[J].动物医学进展,2012,33(9):89-92.DOI: 10.3969/j.issn.1007-5038.2012.09.021. [14] 夏沪彬,陈超,李辉,等.磷酸三(1,3-二氯-2-丙基)酯对L-02肝细胞氧化应激及凋亡损伤机制[J].生态毒理学报,2018,13(5):262-271.DOI: 10.7524/AJE.1673-5897.20180207002. [15] 方旭,胡迎,王艺,等.X染色体骨髓酪氨酸激酶在内毒素/脂多糖诱导RAW264.7小鼠单核巨噬细胞促炎性细胞因子产生中的作用及机制[J].中华烧伤杂志,2017,33(4):211-216.DOI: 10.3760/cma.j.issn.1009-2587.2017.04.005. [16] 周晨丽 阿魏酸拮抗肾小管上皮细胞向肌成纤维细胞转分化 衡阳 南华大学 2018 周晨丽. 阿魏酸拮抗肾小管上皮细胞向肌成纤维细胞转分化[D].衡阳:南华大学,2018.
[17] 黄耀庭,郑淑芬,张信江,等.阿魏酸钠对体外培养人真皮中成纤维细胞EGF表达的影响[J].中国皮肤性病学杂志,2011,25(8):590-593. [18] 任伟光,郭丽丽,张翠英.川芎的研究进展及质量标志物(Q-marker)的预测分析[J].世界科学技术-中医药现代化,2021,23(9):3307-3314. DOI: 10.11842/wst.20201029011. [19] 雒军,王引权,吴国泰,等.当归根部中主要有效成分的动态积累和转化研究[J].中草药,2021,52(21):6663-6668. DOI: 10.7501/j.issn.0253-2670.2021.21.024. [20] ZhangXX,ZhaoDS,WangJ,et al.The treatment of cardiovascular diseases: a review of ferulic acid and its derivatives[J].Pharmazie,2021,76(2):55-60.DOI: 10.1691/ph.2021.0958. [21] NouriA,Ghatreh-SamaniK,Amini-KhoeiH,et al.Ferulic acid prevents cyclosporine-induced nephrotoxicity in rats through exerting anti-oxidant and anti-inflammatory effects via activation of Nrf2/HO-1 signaling and suppression of NF-κB/TNF-α axis[J].Naunyn Schmiedebergs Arch Pharmacol,2022,395(4):387-395.DOI: 10.1007/s00210-022-02212-8. [22] KaurR,SoodA,LangDK,et al.Natural products as sources of multitarget compounds: advances in the development of ferulic acid as multitarget therapeutic[J].Curr Top Med Chem,2022,22(5):347-365.DOI: 10.2174/1568026622666220117105740. [23] ChenJ,WangY,WangS,et al.Salvianolic acid B and ferulic acid synergistically promote angiogenesis in HUVECs and zebrafish via regulating VEGF signaling[J].J Ethnopharmacol,2022,283:114667.DOI: 10.1016/j.jep.2021.114667. [24] AliSA,SaifiMA,PulivendalaG,et al.Ferulic acid ameliorates the progression of pulmonary fibrosis via inhibition of TGF-β/smad signalling[J].Food Chem Toxicol,2021,149:111980.DOI: 10.1016/j.fct.2021.111980. [25] VardiyanR,EzatiD,AnvariM,et al.Effect of L-carnitine on the expression of the apoptotic genes Bcl-2 and Bax[J].Clin Exp Reprod Med,2020,47(3):155-160.DOI: 10.5653/cerm.2019.03440. [26] 王毓国,窦永起,赵森.人参皂苷Rg1对辐射致肠IEC-6细胞损伤保护作用的体外实验[J].解放军医学院学报,2020,41(3):284-288,293.DOI: 10.3969/j.issn.2095-5227.2020.03.019. [27] TraceAP,EnosCW,MantelA,et al.Keloids and hypertrophic scars: a spectrum of clinical challenges[J].Am J Clin Dermatol,2016,17(3):201-223.DOI: 10.1007/s40257-016-0175-7. [28] 李仕一,杨锦秀,赖琳英,等.氧化应激及相关通路在人增生性瘢痕与正常皮肤组织成纤维细胞中的表达差异[J].中华整形外科杂志,2020,36(11):1270-1277.DOI: 10.3760/cma.j.cn114453-20200728-00446. [29] FengY,WuJJ,SunZL,et al.Targeted apoptosis of myofibroblasts by elesclomol inhibits hypertrophic scar formation[J].EBioMedicine,2020,54:102715.DOI: 10.1016/j.ebiom.2020.102715. [30] LeeWJ,LeeJS,AhnHM,et al.Decoy Wnt receptor (sLRP6E1E2)-expressing adenovirus induces anti-fibrotic effect via inhibition of Wnt and TGF-β signaling[J].Sci Rep,2017,7(1):15070.DOI: 10.1038/s41598-017-14893-w. [31] GhazawiFM,ZarghamR,GilardinoMS,et al.Insights into the pathophysiology of hypertrophic scars and keloids: how do they differ?[J].Adv Skin Wound Care,2018,31(1):582-595.DOI: 10.1097/01.ASW.0000527576.27489.0f. [32] ChenJY,ZhangL,ZhangH,et al.Triggering of p38 MAPK and JNK signaling is important for oleanolic acid-induced apoptosis via the mitochondrial death pathway in hypertrophic scar fibroblasts[J].Phytother Res,2014,28(10):1468-1478.DOI: 10.1002/ptr.5150. [33] CuiJ,PlaczekWJ.Post-transcriptional regulation of anti-apoptotic Bcl2 family members[J].Int J Mol Sci,2018,19(1):308.DOI: 10.3390/ijms19010308. [34] ZhangY,YangX,GeX,et al.Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice[J].Biomed Pharmacother,2019,109:726-733.DOI: 10.1016/j.biopha.2018.10.161. [35] 郭双,邢栋,吕勃.细胞凋亡及细胞程序性坏死和细胞焦亡的研究进展[J].中华实用诊断与治疗杂志,2021,35(3):321-324.DOI: 10.13507/j.issn.1674-3474.2021.03.027. [36] LeeHJ,JangYJ. Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids[J]. Int J Mol Sci,2018,19(3):711. DOI: 10.3390/ijms19030711. [37] FinnertyCC, JeschkeMG, BranskiLK, et al.Hypertrophic scarring: the greatest unmet challenge after burn injury[J].Lancet,2016,388(10052):1427-1436.DOI: 10.1016/S0140-6736(16)31406-4. [38] ChenK, RaoZ, DongS, et al. Roles of the fibroblast growth factor signal transduction system in tissue injury repair[J/OL]. Burns Trauma, 2022,10:tkac005[2022-03-20]. https://pubmed.ncbi.nlm.nih.gov/35350443/. DOI: 10.1093/burnst/tkac005. [39] 韩欣洁,孙军平,张明月,等.白藜芦醇对急性肺损伤兔内质网应激和细胞凋亡的影响[J].解放军医学院学报,2020,41(4):364-368.DOI: 10.3969/j.issn.2095-5227.2020.04.012. [40] TangJ,YangJ,HuH,et al.miR-211-5p inhibits the proliferation, migration, invasion, and induces apoptosis of human hypertrophic scar fibroblasts by regulating TGFβR2 expression[J].Ann Transl Med,2021,9(10):864.DOI: 10.21037/atm-21-1806.