留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vγ4T细胞在应用雷帕霉素的小鼠全层皮肤缺损创面愈合障碍中的作用及其机制

刘中阳 程旭 张景霞 张建文 郭丽丽 李广帅 史珂

刘中阳, 程旭, 张景霞, 等. Vγ4T细胞在应用雷帕霉素的小鼠全层皮肤缺损创面愈合障碍中的作用及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(5): 462-470. DOI: 10.3760/cma.j.cn501120-20201209-00523.
引用本文: 刘中阳, 程旭, 张景霞, 等. Vγ4T细胞在应用雷帕霉素的小鼠全层皮肤缺损创面愈合障碍中的作用及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(5): 462-470. DOI: 10.3760/cma.j.cn501120-20201209-00523.
Liu ZY,Cheng X,Zhang JX,et al.Role and mechanism of Vγ4 T cells in impaired wound healing of rapamycin-induced full-thickness skin defects in mice[J].Chin J Burns Wounds,2022,38(5):462-470.DOI: 10.3760/cma.j.cn501120- 20201209-00523.
Citation: Liu ZY,Cheng X,Zhang JX,et al.Role and mechanism of Vγ4 T cells in impaired wound healing of rapamycin-induced full-thickness skin defects in mice[J].Chin J Burns Wounds,2022,38(5):462-470.DOI: 10.3760/cma.j.cn501120- 20201209-00523.

Vγ4T细胞在应用雷帕霉素的小鼠全层皮肤缺损创面愈合障碍中的作用及其机制

doi: 10.3760/cma.j.cn501120-20201209-00523
基金项目: 

郑州大学第一附属医院青年基金项目 

详细信息
    通讯作者:

    史珂,Email:822870715@qq.com

Role and mechanism of Vγ4 T cells in impaired wound healing of rapamycin-induced full-thickness skin defects in mice

Funds: 

Youth Fund Project of the First Affiliated Hospital of Zhengzhou University 

More Information
  • 摘要:
    目的 探讨Vγ4T细胞在应用雷帕霉素的小鼠全层皮肤缺损创面愈合障碍中的作用及其机制。
    方法 采用实验研究方法,选取86只8~12周龄雄性C57BL/6J小鼠(以下简称野生型小鼠)进行后续实验。取5只野生型小鼠,从其腋窝淋巴结分离Vγ4T细胞用于后续实验。取42只野生型小鼠,腹腔注射雷帕霉素建立应用雷帕霉素的小鼠模型,用于后续实验。取18只野生型小鼠,按随机数字表法(分组方法下同)分为不进行任何处理的正常对照组和单纯创伤组、创伤+CC趋化因子配体20(CCL20)抑制剂组(每组6只),将后2组小鼠背部制成全层皮肤缺损创面(创面模型下同),创伤+CCL20抑制剂组小鼠伤后连续3 d于创缘皮下注射CCL20抑制剂,另取6只应用雷帕霉素的小鼠建立创面模型作为雷帕霉素+创伤组,伤后3 d,采用酶消化法提取各创伤小鼠创周皮肤组织的表皮细胞,采用流式细胞仪检测表皮细胞中Vγ4T细胞的百分比。于适宜时间点取正常对照组小鼠背部正常皮肤组织的表皮细胞同前进行检测。取5只野生型小鼠建立创面模型,伤后3 d,提取创周皮肤组织的表皮细胞,采用流式细胞分选仪将细胞群分为Vγ4T细胞、Vγ3T细胞及γδ阴性细胞,分别设为Vγ4T细胞组、Vγ3T细胞组及γδ阴性细胞组(均与B16小鼠黑色素瘤细胞混合),以单纯B16小鼠黑色素瘤细胞为黑色素瘤细胞对照组,采用实时荧光定量反转录PCR(RT-PCR)法检测各组细胞白细胞介素22(IL-22)mRNA表达情况(样本数为6)。取30只应用雷帕霉素的小鼠建立创面模型,伤后即刻分为进行相应注射处理的单纯Vγ4T细胞组与Vγ4T细胞+IL-22抑制剂组以及注射PBS的雷帕霉素对照组(每组10只);另取10只野生型小鼠建立创面模型并注射PBS作为野生型对照组。各组小鼠均连续注射6 d,伤后1、2、3、4、5、6 d于当日注射后计算4组小鼠创面面积百分比。分别取6只野生型小鼠和6只应用雷帕霉素的小鼠建立创面模型,作为野生型组和雷帕霉素组,伤后3 d,分别采用实时荧光定量RT-PCR法及蛋白质印迹法检测2组小鼠创周表皮组织中IL-22、CCL20的mRNA及蛋白的表达情况。取Vγ4T细胞,分为不进行任何处理的正常对照组和用雷帕霉素处理的雷帕霉素组,培养24 h,分别采用实时荧光定量RT-PCR法及蛋白质印迹法检测2组细胞中IL-22的mRNA及蛋白表达情况(样本数为6)。数据分析采用独立样本t检验、重复测量方差分析、单因素方差分析、Bonferroni法、Kruskal-Wallis H检验与Wilcoxon秩和检验。
    结果 单纯创伤组小鼠伤后3 d创周皮肤组织的表皮细胞中Vγ4T细胞百分比为0.66%(0.52%,0.81%),明显高于正常对照组小鼠正常皮肤组织的表皮细胞中的0.09%(0.04%,0.14%),Z=4.31,P<0.01;雷帕霉素+创伤组及创伤+CCL20抑制剂组小鼠伤后3 d创周皮肤组织的表皮细胞中Vγ4T细胞百分比分别为0.25%(0.16%,0.37%)、0.24%(0.17%,0.35%),均较单纯创伤组明显降低(Z值分别为2.27、2.25,P<0.05)。Vγ4T细胞组细胞中IL-22 mRNA表达水平明显高于Vγ3T细胞组、γδ阴性细胞组、黑色素瘤细胞对照组(Z值分别为2.96、2.45、3.41,P<0.05或P<0.01)。与野生型对照组比较,雷帕霉素对照组小鼠伤后1~6 d创面面积百分比均明显增大(P<0.01),Vγ4T细胞+IL-22抑制剂组小鼠伤后1 d及伤后3~6 d创面面积百分比均明显增大(P<0.05或P<0.01)。与雷帕霉素对照组比较,单纯Vγ4T细胞组小鼠伤后1~6 d创面面积百分比均明显减小(P<0.05或P<0.01)。与单纯Vγ4T细胞组比较,Vγ4T细胞+IL-22抑制剂组小鼠伤后3~6 d创面面积百分比均明显增大(P<0.05或P<0.01)。伤后3 d,与野生型组比较,雷帕霉素组小鼠创周表皮组织中IL-22蛋白及mRNA的表达水平(t值分别为-7.82、-5.04,P<0.01)、CCL20蛋白及mRNA的表达水平(t值分别为-7.12、-5.73,P<0.01)均显著下降。培养24 h,雷帕霉素组Vγ4T细胞中IL-22蛋白及mRNA的表达水平均显著低于正常对照组(t值分别为-7.75、-6.04,P<0.01)。
    结论 在全层皮肤缺损小鼠中,雷帕霉素可能通过抑制CCL20表达使CCL20趋化系统受损导致Vγ4T细胞向表皮的募集减少,并同时抑制Vγ4T细胞分泌IL-22从而减缓创面愈合速度。

     

  • 4组全层皮肤缺损小鼠伤后3 d创面面积。1A.野生型对照组创面面积较参照物明显缩小;1B.雷帕霉素对照组创面面积明显大于图1A;1C.单纯Vγ4T细胞组创面面积与图1A相近,明显小于图1B;1D.Vγ4T细胞+白细胞介素22抑制剂组创面面积与图1B相近,明显大于图1C

    注:除野生型对照组外,其余3组小鼠均应用了雷帕霉素

    2组全层皮肤缺损小鼠伤后3 d创周表皮组织中IL-22和CCL20的蛋白与mRNA表达。2A.蛋白质印迹法检测IL-22蛋白表达;2B.IL-22蛋白与mRNA的表达;2C.蛋白质印迹法检测CCL20蛋白表达;2D.CCL20蛋白与mRNA的表达

    注:条带图上方与条图横坐标下1、2均分别指野生型组、雷帕霉素组;IL-22为白细胞介素22,GAPDH为3-磷酸甘油醛脱氢酶,CCL20为CC趋化因子配体20;与野生型组比较,aP<0.01

    2组Vγ4T细胞培养24 h的IL-22蛋白与mRNA表达。3A.蛋白质印迹法检测IL-22的蛋白表达;3B.IL-22蛋白与mRNA的表达

    注:条带图上方与条图横坐标下1、2均分别指正常对照组、雷帕霉素组;IL-22为白细胞介素22,GAPDH为3-磷酸甘油醛脱氢酶;与正常对照组比较,aP<0.01

    表1  4组全层皮肤缺损小鼠伤后各时间点创面面积百分比比较(%,x¯±s

    组别样本数1 d2 d3 d4 d5 d6 d
    野生型对照组1079.3±8.465.7±9.647.0±9.731.5±7.821.5±8.111.1±4.5
    雷帕霉素对照组1093.3±2.9a84.0±8.0a72.5±9.2a56.6±9.7a42.9±7.6a34.5±7.3a
    单纯Vγ4T细胞组1085.4±5.1b70.0±7.9d54.3±9.4d37.4±8.3d27.7±5.3d16.2±3.9d
    Vγ4T细胞+白细胞介素22抑制剂组1088.3±6.1c76.6±9.968.4±10.2ae56.2±14.2af44.0±11.1af29.9±8.8af
    F9.738.0715.4615.6618.2629.26
    P<0.001<0.001<0.001<0.001<0.001<0.001
    注:除野生型对照组外,其余3组小鼠均应用了雷帕霉素;处理因素主效应,F=18.88,P<0.001;时间因素主效应,F=1 126.05,P<0.001;两者交互作用,F=5.05,P<0.001;与野生型对照组比较,aP<0.01,cP<0.05;与雷帕霉素对照组比较,bP<0.05,dP<0.01;与单纯Vγ4T细胞组比较,eP<0.05,fP<0.01
    下载: 导出CSV
  • [1] SehgalSN.Sirolimus: its discovery, biological properties, and mechanism of action[J].Transplant Proc,2003,35(3 Suppl):S7-14.DOI: 10.1016/s0041-1345(03)00211-2.
    [2] HymesLC,WarshawBL.Sirolimus in pediatric patients: results in the first 6 months post-renal transplant[J].Pediatr Transplant,2005,9(4):520-522.DOI: 10.1111/j.1399-3046.2005.00324.x.
    [3] SchäfferM,SchierR,NapireiM,et al.Sirolimus impairs wound healing[J].Langenbecks Arch Surg,2007,392(3):297-303.DOI: 10.1007/s00423-007-0174-5.
    [4] MacDonaldAS.Rapamycin in combination with cyclosporine or tacrolimus in liver, pancreas, and kidney transplantation[J].Transplant Proc,2003,35(3 Suppl):S201-208.DOI: 10.1016/s0041-1345(03)00231-8.
    [5] KuppahallyS,Al-KhaldiA,WeisshaarD,et al.Wound healing complications with de novo sirolimus versus mycophenolate mofetil-based regimen in cardiac transplant recipients[J].Am J Transplant,2006,6(5 Pt 1):986-992.DOI: 10.1111/j.1600-6143.2006.01282.x.
    [6] DeanPG,LundWJ,LarsonTS,et al.Wound-healing complications after kidney transplantation: a prospective, randomized comparison of sirolimus and tacrolimus[J].Transplantation,2004,77(10):1555-1561.DOI: 10.1097/01.tp.0000123082.31092.53.
    [7] ValenteJF,HricikD,WeigelK,et al.Comparison of sirolimus vs. mycophenolate mofetil on surgical complications and wound healing in adult kidney transplantation[J].Am J Transplant,2003,3(9):1128-1134.DOI: 10.1034/j.1600-6143.2003.00185.x.
    [8] MillsRE,TaylorKR,PodshivalovaK,et al.Defects in skin gamma delta T cell function contribute to delayed wound repair in rapamycin-treated mice[J].J Immunol,2008,181(6):3974-3983.DOI: 10.4049/jimmunol.181.6.3974.
    [9] HaidingerM,PoglitschM,GeyereggerR,et al.A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation[J].J Immunol,2010,185(7):3919-3931.DOI: 10.4049/jimmunol.1000296.
    [10] YanezDA,LacherRK,VidyarthiA,et al.The role of macrophages in skin homeostasis[J].Pflugers Arch,2017,469(3/4):455-463.DOI: 10.1007/s00424-017-1953-7.
    [11] DiegelmannRF,EvansMC.Wound healing: an overview of acute, fibrotic and delayed healing[J].Front Biosci,2004,9:283-289.DOI: 10.2741/1184.
    [12] SutohY,MohamedRH,KasaharaM.Origin and evolution of dendritic epidermal T cells[J].Front Immunol,2018,9:1059.DOI: 10.3389/fimmu.2018.01059.
    [13] ChenC,MengZ,RenH,et al.The molecular mechanisms supporting the homeostasis and activation of dendritic epidermal T cell and its role in promoting wound healing[J/OL].Burns Trauma,2021,9:tkab009[2022-03-22]. https://pubmed.ncbi.nlm.nih.gov/34212060/.DOI: 10.1093/burnst/tkab009.
    [14] MarshallAS,SilvaJR,BannermanCA,et al.Skin-resident γδ T cells exhibit site-specific morphology and activation states[J].J Immunol Res,2019,2019:9020234.DOI: 10.1155/2019/9020234.
    [15] LiuZ,XuY,ZhangX,et al.Defects in dermal Vγ4 γ δ T cells result in delayed wound healing in diabetic mice[J].Am J Transl Res,2016,8(6):2667-2680.
    [16] MabuchiT,TakekoshiT,HwangST.Epidermal CCR6+ γδ T cells are major producers of IL-22 and IL-17 in a murine model of psoriasiform dermatitis[J].J Immunol,2011,187(10):5026-5031.DOI: 10.4049/jimmunol.1101817.
    [17] McGeeHM,SchmidtBA,BoothCJ,et al.IL-22 promotes fibroblast-mediated wound repair in the skin[J].J Invest Dermatol,2013,133(5):1321-1329.DOI: 10.1038/jid.2012.463.
    [18] AugustineJJ,BodziakKA,HricikDE.Use of sirolimus in solid organ transplantation[J].Drugs,2007,67(3):369-391.DOI: 10.2165/00003495-200767030-00004.
    [19] RuchinPE,MullerDW,FaddySC,et al.Long-term clinical follow-up of sirolimus-eluting (CYPHER) coronary stents in the treatment of instent restenosis in an unselected population[J].Heart Lung Circ,2007,16(6):440-446.DOI: 10.1016/j.hlc.2007.02.090.
    [20] WitzigTE,KaufmannSH.Inhibition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in hematologic malignancies[J].Curr Treat Options Oncol,2006,7(4):285-294.DOI: 10.1007/s11864-006-0038-1.
    [21] PhungTL,ZivK,DabydeenD,et al.Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin[J].Cancer Cell,2006,10(2):159-170.DOI: 10.1016/j.ccr.2006.07.003.
    [22] 贺伟峰.皮肤γδT细胞各亚群在创面再上皮化过程中的调控作用及其相关机制[J].中华烧伤与创面修复杂志,2022,38(2):114-118.DOI: 10.3760/cma.j.cn501120-20211210-00411.
    [23] 刘勉,朱海杰,杨加彩,等.树突状表皮T淋巴细胞对小鼠创缘表皮细胞增殖和凋亡的影响[J].中华烧伤杂志,2020,36(2):122-130.DOI: 10.3760/cma.j.issn.1009-2587.2020.02.008.
    [24] 王珏,张小容,贺伟峰,等.树突状表皮T细胞在创面愈合中作用机制的研究进展[J].中华烧伤杂志,2021,37(3):296-300.DOI: 10.3760/cma.j.cn501120-20200226-00092.
    [25] ZhengY,CollinsSL,LutzMA,et al.A role for mammalian target of rapamycin in regulating T cell activation versus anergy[J].J Immunol,2007,178(4):2163-2170.DOI: 10.4049/jimmunol.178.4.2163.
    [26] SchutyserE,StruyfS,Van DammeJ.The CC chemokine CCL20 and its receptor CCR6[J].Cytokine Growth Factor Rev,2003,14(5):409-426.DOI: 10.1016/s1359-6101(03)00049-2.
    [27] HomeyB,Dieu-NosjeanMC,WiesenbornA,et al.Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis[J].J Immunol,2000,164(12):6621-6632.DOI: 10.4049/jimmunol.164.12.6621.
    [28] MabuchiT,SinghTP,TakekoshiT,et al.CCR6 is required for epidermal trafficking of γδ-T cells in an IL-23-induced model of psoriasiform dermatitis[J].J Invest Dermatol,2013,133(1):164-171.DOI: 10.1038/jid.2012.260.
    [29] FurueK,ItoT,TsujiG,et al.The CCL20 and CCR6 axis in psoriasis[J].Scand J Immunol,2020,91(3):e12846.DOI: 10.1111/sji.12846.
    [30] FujitaH.The role of IL-22 and Th22 cells in human skin diseases[J].J Dermatol Sci,2013,72(1):3-8.DOI: 10.1016/j.jdermsci.2013.04.028.
    [31] MiyagakiT,SugayaM,SugaH,et al.IL-22, but not IL-17, dominant environment in cutaneous T-cell lymphoma[J].Clin Cancer Res,2011,17(24):7529-7538.DOI: 10.1158/1078-0432.CCR-11-1192.
    [32] AvitabileS,OdorisioT,MadonnaS,et al.Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions[J].J Invest Dermatol,2015,135(11):2862-2870.DOI: 10.1038/jid.2015.278.
    [33] KolumamG,WuX,LeeWP,et al.IL-22R ligands IL-20, IL-22, and IL-24 promote wound healing in diabetic db/db mice[J].PLoS One,2017,12(1):e0170639.DOI: 10.1371/journal.pone.0170639.
    [34] TillackC,EhmannLM,FriedrichM,et al.Anti-TNF antibody- induced psoriasiform skin lesions in patients with inflammatory bowel disease are characterised by interferon-γ-expressing Th1 cells and IL-17A/IL-22-expressing Th17 cells and respond to anti-IL-12/IL-23 antibody treatment[J].Gut,2014,63(4):567-577.DOI: 10.1136/gutjnl-2012-302853.
    [35] Van BelleAB,de HeuschM,LemaireMM,et al.IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice[J].J Immunol,2012,188(1):462-469.DOI: 10.4049/jimmunol.1102224.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  72
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 网络出版日期:  2022-07-20
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回