留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基因工程异种猪皮的发展及其在烧伤创面治疗中的应用研究

段红杰

段红杰. 基因工程异种猪皮的发展及其在烧伤创面治疗中的应用研究[J]. 中华烧伤与创面修复杂志, 2022, 38(9): 805-809. DOI: 10.3760/cma.j.cn501225-20220419-00146.
引用本文: 段红杰. 基因工程异种猪皮的发展及其在烧伤创面治疗中的应用研究[J]. 中华烧伤与创面修复杂志, 2022, 38(9): 805-809. DOI: 10.3760/cma.j.cn501225-20220419-00146.
Duan HJ.Research on the development of genetically engineered xenogenic porcine skin and its application in the treatment of burn wounds[J].Chin J Burns Wounds,2022,38(9):805-809.DOI: 10.3760/cma.j.cn501225-20220419-00146.
Citation: Duan HJ.Research on the development of genetically engineered xenogenic porcine skin and its application in the treatment of burn wounds[J].Chin J Burns Wounds,2022,38(9):805-809.DOI: 10.3760/cma.j.cn501225-20220419-00146.

基因工程异种猪皮的发展及其在烧伤创面治疗中的应用研究

doi: 10.3760/cma.j.cn501225-20220419-00146
基金项目: 

军队后勤科研重大项目 ALB19J001

详细信息
    通讯作者:

    Email:duanhj2009@126.com

Research on the development of genetically engineered xenogenic porcine skin and its application in the treatment of burn wounds

Funds: 

Major Program of Military Logistics Research Plan ALB19J001

More Information
  • 摘要: 近年来,异体皮来源极度匮乏,给大面积危重烧伤患者的救治带来了极大挑战。而异种猪皮虽然结构功能与人皮肤相似,但受免疫排斥反应、猪内源性反转录病毒感染等因素影响,其临床应用受到限制。随着基因编辑技术的发展,特别是成簇规律间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9系统的出现,使一次实施多位点靶基因编辑成为可能,为异种猪皮治疗烧伤创面带来了广阔的应用前景。该文着重对异种猪皮移植治疗临床烧伤创面的进展、存在问题、基因修饰/编辑策略及其应用研究进行讨论。

     

  • [1] 柴家科, 段红杰, 尹会男. 烧伤创面愈合[M]//柴家科. 实用烧伤外科学. 北京:人民军医出版社, 2014: 197-217.
    [2] KalsiR, MessnerF, BrandacherG. Skin xenotransplantation: technological advances and future directions[J]. Curr Opin Organ Transplant, 2020,25(5):464-476. DOI: 10.1097/MOT.0000000000000798.
    [3] ChiuT, BurdA. "Xenograft" dressing in the treatment of burns[J]. Clin Dermatol, 2005,23(4):419-423. DOI: 10.1016/j.clindermatol.2004.07.027.
    [4] DebeerS, Le LuduecJB, KaiserlianD, et al. Comparative histology and immunohistochemistry of porcine versus human skin[J]. Eur J Dermatol, 2013,23(4):456-466. DOI: 10.1684/ejd.2013.2060.
    [5] YamamotoT, IwaseH, KingTW, et al. Skin xenotransplantation: historical review and clinical potential[J]. Burns, 2018,44(7):1738-1749. DOI: 10.1016/j.burns.2018.02.029.
    [6] KitalaD, Klama-BaryłaA, ŁabuśW, et al. Porcine transgenic, acellular material as an alternative for human skin[J]. Transplant Proc, 2020,52(7):2218-2222. DOI: 10.1016/j.transproceed.2020.01.125.
    [7] FishmanJA. Infectious disease risks in xenotransplantation[J]. Am J Transplant, 2018,18(8):1857-1864. DOI: 10.1111/ajt.14725.
    [8] FishmanJA. Prevention of infection in xenotransplantation: designated pathogen-free swine in the safety equation[J]. Xenotransplantation, 2020,27(3):e12595. DOI: 10.1111/xen.12595.
    [9] CooperD, HaraH, IwaseH, et al. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation[J]. Xenotransplantation, 2019,26(4):e12516. DOI: 10.1111/xen.12516.
    [10] HermansMH. Porcine xenografts vs. (cryopreserved) allografts in the management of partial thickness burns: is there a clinical difference?[J]. Burns, 2014,40(3):408-415. DOI: 10.1016/j.burns.2013.08.020.
    [11] SunT, HanY, ChaiJ, et al. Transplantation of microskin autografts with overlaid selectively decellularized split-thickness porcine skin in the repair of deep burn wounds[J]. J Burn Care Res, 2011,32(3):e67-e73. DOI: 10.1097/BCR.0b013e318217f8e2.
    [12] Guttman-YasskyE, ZhouL, KruegerJG. The skin as an immune organ: tolerance versus effector responses and applications to food allergy and hypersensitivity reactions[J]. J Allergy Clin Immunol, 2019,144(2):362-374. DOI: 10.1016/j.jaci.2019.03.021.
    [13] Matter-ReissmannUB, ForteP, SchneiderMK, et al. Xenogeneic human NK cytotoxicity against porcine endothelial cells is perforin/granzyme B dependent and not inhibited by Bcl-2 overexpression[J]. Xenotransplantation, 2002,9(5):325-337. DOI: 10.1034/j.1399-3089.2002.01074.x.
    [14] HaraH, WittW, CrossleyT, et al. Human dominant-negative class Ⅱ transactivator transgenic pigs-effect on the human anti-pig T-cell immune response and immune status[J]. Immunology, 2013,140(1):39-46. DOI: 10.1111/imm.12107.
    [15] CooperDK, EzzelarabMB, HaraH, et al. The pathobiology of pig-to-primate xenotransplantation: a historical review[J]. Xenotransplantation, 2016,23(2):83-105. DOI: 10.1111/xen.12219.
    [16] NiuD, MaX, YuanT, et al. Porcine genome engineering for xenotransplantation[J]. Adv Drug Deliv Rev, 2021,168:229-245. DOI: 10.1016/j.addr.2020.04.001.
    [17] LuT, YangB, WangR, et al. Xenotransplantation: current status in preclinical research[J]. Front Immunol, 2019,10:3060. DOI: 10.3389/fimmu.2019.03060.
    [18] WrightAV, NuñezJK, DoudnaJA. Biology and applications of CRISPR systems: harnessing Nature's toolbox for genome engineering[J]. Cell, 2016,164(1/2):29-44. DOI: 10.1016/j.cell.2015.12.035.
    [19] Kimsa-DudekM, Strzalka-MrozikB, KimsaMW, et al. Screening pigs for xenotransplantation: expression of porcine endogenous retroviruses in transgenic pig skin[J]. Transgenic Res, 2015,24(3):529-536. DOI: 10.1007/s11248-015-9871-y.
    [20] KotzDeborahUniversity of maryland school of medicine faculty scientists and clinicians perform historic first successful transplant of porcine heart into adult human with end-stage heart disease2022-01-102022-04-19https://www.medschool.umaryland.edu/news/2022/University-of-Maryland-School-of-Medicine-Faculty-Scientists-and-Clinicians-Perform-Historic-First-Successful-Transplant-of-Porcine-Heart-into-Adult-Human-with-End-Stage-Heart-Disease.html

    KotzDeborah.University of maryland school of medicine faculty scientists and clinicians perform historic first successful transplant of porcine heart into adult human with end-stage heart disease[EB/OL]. (2022-01-10)[2022-04-19]. https://www.medschool.umaryland.edu/news/2022/University-of-Maryland-School-of-Medicine-Faculty-Scientists-and-Clinicians-Perform-Historic-First-Successful-Transplant-of-Porcine-Heart-into-Adult-Human-with-End-Stage-Heart-Disease.html.

    [21] IwaseH, KleinEC, CooperDK. Physiologic aspects of pig kidney transplantation in nonhuman primates[J]. Comp Med, 2018,68(5):332-340. DOI: 10.30802/AALAS-CM-17-000117.
    [22] WeinerJ, YamadaK, IshikawaY, et al. Prolonged survival of GalT-KO swine skin on baboons[J]. Xenotransplantation, 2010,17(2):147-152. DOI: 10.1111/j.1399-3089.2010.00576.x.
    [23] AlbrittonA, LeonardDA, Leto BaroneA, et al. Lack of cross-sensitization between α-1,3-galactosyltransferase knockout porcine and allogeneic skin grafts permits serial grafting[J]. Transplantation, 2014,97(12):1209-1215. DOI: 10.1097/TP.0000000000000093.
    [24] LeonardDA, MallardC, AlbrittonA, et al. Skin grafts from genetically modified α-1,3-galactosyltransferase knockout miniature swine: a functional equivalent to allografts[J]. Burns, 2017,43(8):1717-1724. DOI: 10.1016/j.burns.2017.04.026.
    [25] HolzerP, AdkinsJ, MoultonK, et al. Vital, porcine, gal-knockout skin transplants provide efficacious temporary closure of full-thickness wounds: good laboratory practice-compliant studies in nonhuman primates[J]. J Burn Care Res, 2020,41(2):229-240. DOI: 10.1093/jbcr/irz124.
    [26] FujitaT, MachidaK, MatsumotoY, et al. Cynomolgus monkey did not hyperacutely reject skin xenograft of N-acetylglucosaminyltransferase Ⅲ gene transgenic pig[J]. Transplant Proc, 2003,35(1):518. DOI: 10.1016/s0041-1345(02)03823-x.
    [27] FujitaT, MiyagawaS, EzoeK, et al. Skin graft of double transgenic pigs of N-acetylglucosaminyltransferase Ⅲ (GnT-Ⅲ) and DAF (CD55) genes survived in cynomolgus monkey for 31 days[J]. Transpl Immunol, 2004,13(4):259-264. DOI: 10.1016/j.trim.2004.08.001.
    [28] TenaAA, SachsDH, MallardC, et al. Prolonged survival of pig skin on baboons after administration of pig cells expressing human CD47[J]. Transplantation, 2017,101(2):316-321. DOI: 10.1097/TP.0000000000001267.
    [29] 程飚, 付小兵. 微环境控制是实现创面完美修复的必由之路[J].中华烧伤杂志,2020,36(11):1003-1008. DOI: 10.3760/cma.j.cn501120-20201009-00429.
    [30] KatoT, KhanhVC, SatoK, et al. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2017,493(2):1010-1017. DOI: 10.1016/j.bbrc.2017.09.100.
    [31] BarkerJC, BarkerAD, BillsJ, et al. Genome editing of mouse fibroblasts by homologous recombination for sustained secretion of PDGF-B and augmentation of wound healing[J]. Plast Reconstr Surg, 2014,134(3):389e-401e. DOI: 10.1097/PRS.0000000000000427.
    [32] Massachusetts General HospitalFirst application of genetically modified, live-cell, pig skin to a human wound2019-10-112022-04-19https://medicalxpress.com/news/2019-10-application-genetically-live-cell-pig-skin.html

    Massachusetts General Hospital. First application of genetically modified, live-cell, pig skin to a human wound[EB/OL]. (2019-10-11)[2022-04-19]. https://medicalxpress.com/news/2019-10-application-genetically-live-cell-pig-skin.html.

  • 加载中
图(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  77
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 网络出版日期:  2022-09-27
  • 刊出日期:  2022-09-27

目录

    /

    返回文章
    返回