留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三轴测量机拓扑结构的单项几何误差模型

赖涛 彭小强 徐超 戴一帆 胡皓 刘俊峰

赖涛, 彭小强, 徐超, 戴一帆, 胡皓, 刘俊峰. 基于三轴测量机拓扑结构的单项几何误差模型[J]. 机械工程学报, 2022, 58(24): 10-19. doi: 10.3901/JME.2022.24.010
引用本文: 赖涛, 彭小强, 徐超, 戴一帆, 胡皓, 刘俊峰. 基于三轴测量机拓扑结构的单项几何误差模型[J]. 机械工程学报, 2022, 58(24): 10-19. doi: 10.3901/JME.2022.24.010
LAI Tao, PENG Xiaoqiang, XU Chao, DAI Yifan, HU Hao, LIU Junfeng. Single Geometric Error Model of 3-axis Measurement Machine Based on Topological Structure[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 10-19. doi: 10.3901/JME.2022.24.010
Citation: LAI Tao, PENG Xiaoqiang, XU Chao, DAI Yifan, HU Hao, LIU Junfeng. Single Geometric Error Model of 3-axis Measurement Machine Based on Topological Structure[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 10-19. doi: 10.3901/JME.2022.24.010

基于三轴测量机拓扑结构的单项几何误差模型

doi: 10.3901/JME.2022.24.010
基金项目: 

国家重点研发计划 2019YF0708903

高性能复杂制造国家重点实验室开放课题基金 Kfkt2021-07

国家自然科学基金 52205505

国防科技大学科研计划 ZK22-12

详细信息
    作者简介:

    赖涛,男,1991年出生,博士,讲师。主要研究方向为精密工程。E-mail:laitao_nudt@163.com

    彭小强,男,1977年出生,博士,研究员,博士研究生导师。主要研究方向为光学零件先进制造装备和工艺、超精密切削加工工艺及装备、超精密机电系统测控、纳米精度形面测量评价和高性能成像系统技术等。E-mail:pxq2000@vip.sina.com

    通讯作者:

    刘俊峰(通信作者),男,1987年出生,博士,副研究员,博士研究生导师。主要研究方向为机械系统动力学、超精密加工、典型惯性器件超精密检测与动态分析等。E-mail:ljf20090702122@163.com

  • 中图分类号: TG156

Single Geometric Error Model of 3-axis Measurement Machine Based on Topological Structure

  • 摘要: 基于刚体模型和小角度假设,传统的几何误差模型采用传递矩阵建立几何误差与测量机空间误差的关系。但通过传递矩阵建立的几何误差模型难以清晰揭示各单项几何误差对空间误差的影响关系。为了更清楚地表达单项几何误差对空间误差的影响关系,基于三轴测量机拓扑结构建立了各单项几何误差模型,分析了测量机各项阿贝误差产生机制。利用所建立的单项几何误差模型分析各单项几何误差的影响权重,对自研测量机高权重几何误差进行辨识与补偿,结果表明,补偿后测量机测量直径150 mm平面与直径60 mm凹球面的PV值分别达到344.32 nm和161.74 nm,面形误差与波面干涉仪测量结果基本一致。单项几何误差模型有助于了解阿贝误差的产生机理;提出的几何误差权重计算方法有助于实现对测量机敏感误差的精确控制,指导高精度测量机结构设计与测量精度的提升。

     

    基于刚体模型和小角度假设,传统的几何误差模型采用传递矩阵建立几何误差与测量机空间误差的关系。但通过传递矩阵建立的几何误差模型难以清晰揭示各单项几何误差对空间误差的影响关系。为了更清楚地表达单项几何误差对空间误差的影响关系,基于三轴测量机拓扑结构建立了各单项几何误差模型,分析了测量机各项阿贝误差产生机制。利用所建立的单项几何误差模型分析各单项几何误差的影响权重,对自研测量机高权重几何误差进行辨识与补偿,结果表明,补偿后测量机测量直径150 mm平面与直径60 mm凹球面的PV值分别达到344.32 nm和161.74 nm,面形误差与波面干涉仪测量结果基本一致。单项几何误差模型有助于了解阿贝误差的产生机理;提出的几何误差权重计算方法有助于实现对测量机敏感误差的精确控制,指导高精度测量机结构设计与测量精度的提升。
  • 图  固定桥式笛卡儿坐标测量机

    图  测量机的9项阿贝臂长

    图  X轴3项角运动误差对测量的影响

    图  Y轴3项阿贝误差对测量的影响

    图  Z轴3项阿贝误差对测量的影响

    图  垂直度误差对测量的影响

    图  几何误差权重计算流程

    图  不同几何误差形式下的几何误差权重对比

    图  不同工件类型下的几何误差权重对比

    图  10  测量机运动直线度测量现场(EZX测量)

    图  11  运动直线度测量结果

    图  12  150 mm的铝镜测量结果

    图  13  角误差测量原理与测量现场

    图  14  运动角度误差测量结果

    图  15  不同导轨运动角误差测量

    图  16  不同导轨工作台运动过程中俯仰角误差对比

    图  17  60 mm凹球面测量结果

  • [1] LEE K, YANG S H. Measurement and verification of position independent geometric errors of a five-axis machine tool using a double ball-bar[J]. International Journal of Machine Tools & Manufacture, 2013, 70: 45-52.
    [2] 张国雄. 三坐标测量机[M]. 天津: 天津大学出版社, 1999.

    ZHANG Guoxiong. Coordinate measuring machine[M]. Tianjin: Tianjin University Press, 1999.
    [3] 张国雄. 三坐标测量机的发展趋势[J]. 中国机械工程, 2000, 11(1): 222-226. doi: 10.3321/j.issn:1004-132X.2000.01.054

    ZHANG Guoxiong. The development tendency of coordinate measuring machines[J]. China Mechanical Engineering, 2000, 11(1): 222-226. doi: 10.3321/j.issn:1004-132X.2000.01.054
    [4] LEETE D L. Automatic compensation of alignment errors in machine-tool[J]. International Journal of Machine Tools & Manufacture, 1961, 1: 293-324.
    [5] FRENCH D, HUMPHRIES S H. Compensation for backlash and alignment errors in a numerically controlled machine-tool by a digital computer program[C]// M. T. D. R. Conf. Proc., 1968, 8: 707-726.
    [6] HOCKEN R, SIMPSON J A, BORCHARDT B, et al. Three dimensional metrology[J]. Annals of the CIRP, 1977, 1(26): 403-408.
    [7] FERREIRA P M. An analytical quadratic model for the geometric errors of a machine tool[J]. Journal of Manufacturing System, 1986, 1(5): 51-62.
    [8] ELSHCHNAWY A K, HAM I. Performance improvement of in coordinate measuring machines by error[J]. Manufacturing Systems, 1989, 2(9): 151-158.
    [9] KIM K, KIM M K. Volumetric accuracy analysis based generalized geometric error model in multi-axes machine tools[J]. Mech. Mach. Theory, 1991, 2(26): 207-219.
    [10] 孙天慧, 田文杰, 王辉, 等. 基于球杆仪的三坐标并联动力头运动学标定方法[J]. 机械工程学报, 2012, 48(5): 22-27. http://www.cjmenet.com.cn/CN/Y2012/V48/I5/22

    SUN Tianhui, TIAN Wenjie, WANG Hui, et al. Kinematic Calibration of 3-DOF spindle head using double-ball bar[J]. Journal of Mechanical Engineering, 2012, 48(5): 22-27. http://www.cjmenet.com.cn/CN/Y2012/V48/I5/22
    [11] 朱嘉, 李醒飞, 谭文斌, 等. 基于激光干涉仪的测量机几何误差检定技术[J]. 机械工程学报, 2010, 46(10): 25-30. http://www.cjmenet.com.cn/CN/Y2010/V46/I10/25

    ZHU Jia, LI Xingfei, TAN Wenbin, et al. Method of geometric error detection for measuring machine based on laser interferometer[J]. Journal of Mechanical Engineering, 2010, 46(10): 25-30. http://www.cjmenet.com.cn/CN/Y2010/V46/I10/25
    [12] ZHANG Guoxiong, HOCKEN R, VEALE R, et al. A displacement method for machine geometry calibration[J]. Annals of CIRP, 1988, 1(37): 515-518.
    [13] CHEN Guiquan, YUAN Jingxia, NI Jun. A displacement measurement approach for machine geometric error assessment[J]. International Journal of Machine Tools & Manufacture, 2001, 1(41): 149-161.
    [14] 马锡琪, 邓晓京. 数控机床三维运动误差的测量技术及其评价方法[J]. 机械科学与技术, 1994, 4(4): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX404.022.htm

    MA Xiqi, DENG Xiaojing. Measurement technology and evaluation method of 3D motion error of CNC machine tools[J]. Mechanical Science and Technology, 1994, 4(4): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX404.022.htm
    [15] FU Guoqiang, FU Jianzhong, SHEN Hongyao, et al. NC codes optimization for geometric error compensation of five-axis machine tools with one novel mathematical model[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(9): 1-16.
    [16] 田文杰, 牛文铁, 常文芬, 等. 数控机床几何精度溯源方法研究[J]. 机械工程学报, 2014, 50(7): 128-135. http://www.cjmenet.com.cn/CN/Y2014/V50/I7/128

    TIAN Wenjie, NIU Wentie, CHANG Wenfen, et al. Research on geometric accuracy traceability method of CNC machine tools[J]. Journal of Mechanical Engineering, 2014, 50 (7): 128-135. http://www.cjmenet.com.cn/CN/Y2014/V50/I7/128
    [17] 李欢玲, 吴洪涛. 三坐标数控机床的几何误差参数辨识[J]. 机械制造, 2008, 46(4): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG200804004.htm

    LI Huanling, WU Hongtao. Geometric error parameter identification of three-dimensional CNC machine tools [J]. Machine Manufacturing, 2008, 46 (4): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG200804004.htm
    [18] 张娟, 高锋阳, 蒋兆远. 基于激光干涉仪的数控测量机几何误差辨识与补偿[J]. 兰州交通大学报, 2009, 28(6): 46-49.

    ZHANG Juan, GAO Fengyang, JIANG Zhaoyuan. Geometric error identification and compensation of CNC measuring machine based on laser interferometer[J]. Journal of Lanzhou Jiaotong University, 2009, 28 (6): 46-49.
    [19] ZHANG Guoxiong. A study on the Abbe principle and Abbe error[J]. CIRP Annals-Manufacturing Technology, 1989, 38(1): 525-528.
    [20] XIE Guangping, FANG Zhongyan, WANG Dongsheng. Abbe error real-time correction system[J]. Aviation Measurement Technology, 1996, 39(4): 6-9.
    [21] FAN Kuangchao. Development of a small 3-axis angular sensor for real-time Abbe error compensation on numerically controlled machine tools[C]// Proceedings of the 36th International MATADOR Conference. Springer, London, 2010: 317-321.
    [22] 石照耀, 张斌, 费业泰. 阿贝原则再认识[J]. 仪器仪表学报, 2012, 33(5): 1128-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201205025.htm

    SHI Zhaoyao, ZHANG Bin, FEI Yetai. Recognition of Abbe principle[J]. Acta Instrumenta Sinica, 2012, 33(5): 1128-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201205025.htm
    [23] ZHANG Jiankun, HU Penghao, MA Xiaoqing. Analysis of Abbe error in 3-PUU parallel measuring machine[J]. Chinese Scientific Paper, 2015, 10(4): 471-474.
    [24] VAHEBI M, AREZOO B. Accuracy improvement of volumetric error modeling in CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2243-2257.
    [25] LI Zihan, FENG Wenlong, YANG Jianguo. An investigation on modeling and compensation Of synthetic geometric errors on large machine tools based on moving least squares method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(3): 412-427.
    [26] HUANG Y B, FAN Kuangchao, LOU Zhifeng. A novel modeling of volumetric errors of three-axis machine tools based on Abbe and Bryan principles[J]. International Journal of Machine Tools & Manufacture, 2020, 151: 103527.
    [27] ZHOU Zhixiong, ZHOU Qinyuan, REN Yinghui. Research status and development trend of complex surface machining technology[J]. Journal of Mechanical Engineering, 2010, 46 (17): 105-113.
    [28] SPANN M, WIDDERSHOVEN I. Isara 400 ultra-precision CMM[C]// Proceedings of SPIE, 2011, 8169: 81690T.
    [29] RUIJL T. Ultra-precision coordinate measuring machine: Design, calibration and error compensation[D]. Eindhoven: Eindhoven University, 2001
    [30] RUIJL T. Thermal effects in precision systems: Design considerations, modelling, compensation and validation techniques[J]. Diamond Light Source Proceedings, 2011, 1: MEDSI-6.
    [31] BUKKEMS B, RUIJL T, SIMONS J. Vibration isolation and damping in high precision equipment[C]//Fourth European Seminar on Precision Optics Manufacturing. International Society for Optics and Photonics, 2017, 10326: 103260D.
    [32] SCHMIDT I, HAUSOTTE T, GERHARDT U, et al. Investigations and calculations into decreasing the uncertainty of a nanopositioning and nanomeasuring machine (NPM-Machine)[J]. Measurement Science & Technology, 2017, 18: 482-486.
    [33] JAGER G, MANSKE E, HAUSOTTE T, et al. The metrological basis and operation of nanopositioning and nanomeasuring machine NMM-1[J]. Techisches Messen: Sensore, Gerate, Systeme, 2009, 76(5): 227-234.
    [34] HAUSOTTE T. Nanopositioning and nanomeasuring machine[D]. Ilmenau: Ilmenau University, 2002.
    [35] HUANG Qiangxian, YU Fuling, GONG Ermin, et al. Zero Abbe error nano CMM worktable and error analysis[J]. Optical precision engineeriguanng, 2013, 21(3): 664-671.
    [36] VEGHEL van M G A, BERGMANS R H, NIEUWENKAMP H J. Traceability of a linescale based micro-CMM[C]// Proceedings of the 10th Anniversary International Conference of the European Society for Precision Engineering and Nanotechnology, Zurich, Switzerland, 2008: 263-267.
    [37] HENSELMANS R, CACACE L A, KRAMER G F Y, et al. The NANOMEFOS non-contact measurement machine for freeform optics[J]. Precision Engineering, 2011, 35(4): 607-624.
    [38] TSUTSUMI H, YOSHIZUMI K, TAKEUCHI H. Ultrahighly accurate 3D profilometer[C]// SPIE: Optical Design and Testing Ⅱ. International Society for Optics and Photonics, 2005, 5638: 387-394.
    [39] YU L, BRAND U, MUENCHENHAGEN R. Microsystem metrology—The PTB special CMM [C/CD]// Proc. of International Symposium on Precision Mechanical Measurements, 2002.
    [40] LEWIS A, OLDFIELD S, PEGGS G N. The NPL Small CMM-3-D measurement of small features[C/CD]// Laser Metrology and Machine Performance, 2001.
  • 加载中
图(18)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 修回日期:  2022-09-25
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回