留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于源强先验引导的正交匹配追踪声源识别算法

徐亮 权璐纯 尚俊超 李敬豪 张小正

徐亮, 权璐纯, 尚俊超, 李敬豪, 张小正. 基于源强先验引导的正交匹配追踪声源识别算法[J]. 机械工程学报, 2022, 58(24): 20-31. doi: 10.3901/JME.2022.24.020
引用本文: 徐亮, 权璐纯, 尚俊超, 李敬豪, 张小正. 基于源强先验引导的正交匹配追踪声源识别算法[J]. 机械工程学报, 2022, 58(24): 20-31. doi: 10.3901/JME.2022.24.020
XU Liang, QUAN Luchun, SHANG Junchao, LI Jinghao, ZHANG Xiaozheng. Sound Source Identification Based on Orthogonal Matching Pursuit Algorithm Guided by Source Strengthen Prior[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 20-31. doi: 10.3901/JME.2022.24.020
Citation: XU Liang, QUAN Luchun, SHANG Junchao, LI Jinghao, ZHANG Xiaozheng. Sound Source Identification Based on Orthogonal Matching Pursuit Algorithm Guided by Source Strengthen Prior[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 20-31. doi: 10.3901/JME.2022.24.020

基于源强先验引导的正交匹配追踪声源识别算法

doi: 10.3901/JME.2022.24.020
基金项目: 

国家自然科学基金资助项目 51875147

详细信息
    通讯作者:

    徐亮(通信作者),男,1981年出生,副研究员。主要研究方向为先进噪声源识别技术、近场声全息。E-mail:hf_xl307@sina.com

  • 中图分类号: TB532

Sound Source Identification Based on Orthogonal Matching Pursuit Algorithm Guided by Source Strengthen Prior

  • 摘要: 压缩感知理论的出现为采用较少的传声器实现高分辨率声源识别与定位,提供了理论可能和实现途径。因此越来越多的学者将压缩感知方法应用到声源识别领域当中。在已有的诸多压缩感知重构算法中,正交匹配追踪(Orthogonal matching pursuit,OMP)算法具有旁瓣小、分辨率较高、算法过程简单、计算速度快、易于硬件实现等优点,具有广泛的应用潜力。但是OMP算法在实际应用场合中表现出的对低频声源定位效果差,聚焦面网格密集划分时易出现定位偏差的缺点限制了算法的应用范围。为此,通过对OMP算法关键步骤的理论分析,找出OMP算法上述缺陷的理论来源,在此基础上提出一种基于源强先验引导的OMP声源定位算法,该方法在OMP原子筛选过程中引入了源强先验信息,可以较好地克服由相邻声源距离较近或分析频率较低时原子间相关性增强引起的原子选择错误,从而进一步提高了算法的声源定位准确率,拓宽了算法适用的频率范围,在实际中可实现宽频带声源的高分辨率识别与定位。

     

    压缩感知理论的出现为采用较少的传声器实现高分辨率声源识别与定位,提供了理论可能和实现途径。因此越来越多的学者将压缩感知方法应用到声源识别领域当中。在已有的诸多压缩感知重构算法中,正交匹配追踪(Orthogonal matching pursuit,OMP)算法具有旁瓣小、分辨率较高、算法过程简单、计算速度快、易于硬件实现等优点,具有广泛的应用潜力。但是OMP算法在实际应用场合中表现出的对低频声源定位效果差,聚焦面网格密集划分时易出现定位偏差的缺点限制了算法的应用范围。为此,通过对OMP算法关键步骤的理论分析,找出OMP算法上述缺陷的理论来源,在此基础上提出一种基于源强先验引导的OMP声源定位算法,该方法在OMP原子筛选过程中引入了源强先验信息,可以较好地克服由相邻声源距离较近或分析频率较低时原子间相关性增强引起的原子选择错误,从而进一步提高了算法的声源定位准确率,拓宽了算法适用的频率范围,在实际中可实现宽频带声源的高分辨率识别与定位。
  • 图  声源识别示意图

    图  原子间相关性与声源频率的关系

    图  原子间相关性与聚焦面网格的密集程度的关系

    图  仿真中的阵元分布

    图  声源频率为700 Hz时,两种算法的声源定位效果图

    图  两种算法的等值线图

    图  声源频率为1 400 Hz时,两种算法的声源定位效果图

    图  声源频率为2 000 Hz时,两种算法的声源定位效果图

    图  聚焦面网格间距为0.05 m时的声源定位效果图

    图  10  聚焦面网格间距为0.01 m时的声源定位效果图

    图  11  试验场景图

    图  12  试验中采用的随机阵列分布

    图  13  频率为700 Hz时两种算法声源识别结果对比

    图  14  频率为1 400 Hz时两种算法声源识别结果对比

    图  15  频率为2 000 Hz时两种算法声源识别结果对比

  • [1] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [2] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. doi: 10.1109/MSP.2007.914731
    [3] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic Decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61. doi: 10.1137/S1064827596304010
    [4] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society. Series B, 1996, 58(1): 267-288.
    [5] MALIOUTOV D, ÇETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. doi: 10.1109/TSP.2005.850882
    [6] XENAKI A, GERSTOFT P, MOSEGAARD K. Compressive beamforming[J]. The Journal of the Acoustical Society of America, 2014, 136(1): 260-271. doi: 10.1121/1.4883360
    [7] CANDES E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9): 589-592.
    [8] MALLAT S G, ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082
    [9] TROPP J A. Greed is good: Algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242. doi: 10.1109/TIT.2004.834793
    [10] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108
    [11] NEEDELL D, VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2009, 9(3): 317-334. doi: 10.1007/s10208-008-9031-3
    [12] DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. doi: 10.1109/TIT.2011.2173241
    [13] NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321. doi: 10.1016/j.acha.2008.07.002
    [14] JI Shihao, XUE Ya, CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346- 2356. doi: 10.1109/TSP.2007.914345
    [15] WANG Xiangrong. Bayesian compressive sensing for DOA estimation using the difference coarray[C]// 2015 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), April 19-24, 2015, University of New South Wales, Sydney, New South Wales. Brisbane: IEEE, 2015: 2384-2388.
    [16] HU Dingyu, LIU Xingyue, XIAO Yue, et al. Fast sparse reconstruction of sound field via bayesian compressive sensing[J]. Journal of Vibration and Acoustics, 2019, 141(4): 041017-041017-9. doi: 10.1115/1.4043239
    [17] PADOIS T, BERRY A. Orthogonal matching pursuit applied to the deconvolution approach for the mapping of acoustic sources inverse problem[J]. The Journal of the Acoustical Society of America, 2015, 138(6): 3678-3685. doi: 10.1121/1.4937609
    [18] 宁方立, 卫金刚, 刘勇, 等. 压缩感知声源定位方法研究[J]. 机械工程学报, 2016, 52(19): 42-52. doi: 10.3901/JME.2016.19.042

    NING Fangli, WEI Jingang, LIU Yong, et al. Study on sound sources localization using compressive sensing[J]. Journal of Mechanical Engineering, 2016, 52(19): 42-52. doi: 10.3901/JME.2016.19.042
    [19] 许丹, 张小正, 毕传兴. 基于正交匹配追踪算法定位管道内旋转声源[C]// 全国声学会议论文集, 2016.10. 28. 武汉: 中国声学学会, 2016: 543-546.

    XU Dan, ZHANG Xiaozheng, BI Chuanxing. Location of rotating sound sources in duct based on the orthogonal matching pursuit algorithm[C]// Proceedings of the National Acoustics Conference, October 28, 2016. Wuhan: The Acoustical Society of China, 2016: 543-546.
    [20] YANG Yongxin, CHU Zhigang, YANG Yang. Two-dimensional newtonized orthogonal matching pursuit compressive beamforming[J]. The Journal of the Acoustical Society of America, 2020, 148(3): 1337-1348. doi: 10.1121/10.0001919
    [21] WILLIAMS E G. Regularization methods for near-field acoustical holography[J]. The Journal of the Acoustical Society of America, 2001, 110(4): 1976-1988. doi: 10.1121/1.1404381
  • 加载中
图(16)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-12
  • 修回日期:  2022-10-06
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回