留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超超临界火电机组异种钢焊接接头高温断裂机理综述

康举 王启冰 王智春 韩哲文 左月 张华 焦向东

康举, 王启冰, 王智春, 韩哲文, 左月, 张华, 焦向东. 超超临界火电机组异种钢焊接接头高温断裂机理综述[J]. 机械工程学报, 2022, 58(24): 58-83. doi: 10.3901/JME.2022.24.058
引用本文: 康举, 王启冰, 王智春, 韩哲文, 左月, 张华, 焦向东. 超超临界火电机组异种钢焊接接头高温断裂机理综述[J]. 机械工程学报, 2022, 58(24): 58-83. doi: 10.3901/JME.2022.24.058
KANG Ju, WANG Qibing, WANG Zhichun, HAN Zhewen, ZUO Yue, ZHANG Hua, JIAO Xiangdong. A Review on High Temperature Rupture Mechanisms of Dissimilar Metal Welded Joints for the USC Thermal Power Units[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 58-83. doi: 10.3901/JME.2022.24.058
Citation: KANG Ju, WANG Qibing, WANG Zhichun, HAN Zhewen, ZUO Yue, ZHANG Hua, JIAO Xiangdong. A Review on High Temperature Rupture Mechanisms of Dissimilar Metal Welded Joints for the USC Thermal Power Units[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 58-83. doi: 10.3901/JME.2022.24.058

超超临界火电机组异种钢焊接接头高温断裂机理综述

doi: 10.3901/JME.2022.24.058
基金项目: 

国家自然科学基金 52175286

北京市自然科学基金 3194048

先进焊接与连接国家重点实验室开放课题研究基金 AWJ-21M13

先进成形制造教育部重点实验室开放课题基金 202102

清华大学高端装备界面科学与技术全国重点实验室开放基金 SKLTKF20B16

北京石油化工学院交叉科研探索 BIPTCSF-004

北京石油化工学院重要科研成果培育 BIPTACF-009

详细信息
    作者简介:

    康举,男,1983年出生,博士,副教授。主要研究方向为异种金属焊接。E-mail:kangju@bipt.edu.cn

    通讯作者:

    焦向东(通信作者),男,1962年出生,博士,教授。主要研究方向为焊接自动化、水下/压力环境下焊接工艺与设备。E-mail:jiaoxiangdong@bipt.edu.cn

  • 中图分类号: TG407

A Review on High Temperature Rupture Mechanisms of Dissimilar Metal Welded Joints for the USC Thermal Power Units

  • 摘要: 我国现役超超临界(Ultra-supercritical, USC)火电机组锅炉受热面管系中有大量由铁素体耐热钢与镍基合金/奥氏体耐热钢构成的异种钢焊接接头(Dissimilar metal welded joints, DMWJs)。生产实践表明,大量的DMWJs在服役7万~10万h后发生早期失效,使用寿命远低于设计寿命30年或20万h。DMWJs早期开裂事故的频发,不仅对机组的安全运行造成极大危害,而且给发电企业带来了巨大的经济损失和负面的社会影响,同时也反映了当前对异种钢焊接,尤其是DMWJs高温服役性能的认识仍存在不足。为深入解析DMWJs的早期失效原因,回顾并总结了国内外近20年对9-12%Cr钢/镍基合金、9-12%Cr钢/奥氏体耐热钢DMWJs在高温蠕变、高温疲劳等高温力学性能方面的研究结果;分别从环境温度、加载应力、DMWJs的热力学特性、焊接残余应力、微观组织演变等方面,总结了不同因素对DMWJs高温断裂模式和断裂特征的影响,详细阐述了DMWJs在高温蠕变和疲劳条件下的断裂机理,归纳了当前较流行的高温断裂损伤物理模型及其发展应用。最后,本文建议了两种较为有效的可改善接头高温力学性能的方法,并对未来的研究方向进行了建议和展望。

     

    我国现役超超临界(Ultra-supercritical, USC)火电机组锅炉受热面管系中有大量由铁素体耐热钢与镍基合金/奥氏体耐热钢构成的异种钢焊接接头(Dissimilar metal welded joints, DMWJs)。生产实践表明,大量的DMWJs在服役7万~10万h后发生早期失效,使用寿命远低于设计寿命30年或20万h。DMWJs早期开裂事故的频发,不仅对机组的安全运行造成极大危害,而且给发电企业带来了巨大的经济损失和负面的社会影响,同时也反映了当前对异种钢焊接,尤其是DMWJs高温服役性能的认识仍存在不足。为深入解析DMWJs的早期失效原因,回顾并总结了国内外近20年对9-12%Cr钢/镍基合金、9-12%Cr钢/奥氏体耐热钢DMWJs在高温蠕变、高温疲劳等高温力学性能方面的研究结果;分别从环境温度、加载应力、DMWJs的热力学特性、焊接残余应力、微观组织演变等方面,总结了不同因素对DMWJs高温断裂模式和断裂特征的影响,详细阐述了DMWJs在高温蠕变和疲劳条件下的断裂机理,归纳了当前较流行的高温断裂损伤物理模型及其发展应用。最后,本文建议了两种较为有效的可改善接头高温力学性能的方法,并对未来的研究方向进行了建议和展望。
  • 图  2001至2021年国内外在9Cr钢/奥氏体钢

    (镍基合金)异种钢焊接领域发表论文情况

    图  DMWJs蠕变断裂类型示意图

    图  不同温度和应力下镍基填充金属DMWJs的断裂失效模式形貌[17, 19-20]

    图  Ⅳ型和Ⅴ型蠕变断裂模式[35]

    图  DMWJs中析出相对Ⅳ型蠕变损伤作用规律[39-40]

    图  第二相粒子对蠕变裂纹扩展影响机制示意图[36]

    图  DMWJs的Ⅵ型(IF型)断裂过程示意图

    图  DMWJs界面氧化缺口形成示意图[19]

    图  P92钢和镍基焊缝的Ⅵ型蠕变裂纹扩展模式[41]

    (蠕变条件:600 ℃,135 MPa)

    图  10  P91/镍基焊缝FZ损伤模式[46]

    图  11  高Cr钢/镍基合金DMWJs蠕变损伤

    (蠕变条件:620 ℃,100 MPa)[49]

    图  12  DMWJs界面处析出相演变与蠕变损伤示意图[49]

    图  13  DMWJs高温蠕变强度与断裂位置转移关系[19-21, 26, 84]

    图  14  不同焊后热处理T92/镍基合金DMWJs断裂模式[55]

    图  15  9Cr钢/617镍基合金DMWJs断裂转移[62]

    图  16  DMWJs的低周疲劳竞争失效模型[62]

    图  17  DMWJs蠕变-疲劳断裂机制[27]

    图  18  T91钢/镍基合金DMWJs蠕变-疲劳两种损伤模式[73]

    图  19  全尺寸DMWJs蠕变-疲劳试验[83]

    图  20  试验和数值模拟预测的DMWJs蠕变寿命比较[20, 26, 92, 95-96]

    图  21  P92焊接接头各分区的蠕变应变速率比较

    图  22  P92钢侧各分区的裂纹长度与断裂寿命关系

    图  23  T91/HR3C接头FZ附近的应力三轴度分布[32]

    图  24  Ⅳ型断裂中DMWJs各分区的蠕变速率比较[84]

    图  25  A508钢/316L钢DMWJs延性损伤的模拟结果与试验结果比较[66, 108]

    图  26  A508/Alloy52Mb界面区附近的J-R阻力曲线

    图  27  残余应力对DMWJs疲劳性能的影响[116-117]

    图  28  不同焊后热处理下,DMWJs高温蠕变强度对比[55, 119]

    表  1  DMWJs高温蠕变断裂失效模式[17-28]

    应力水平 断裂类型 断裂位置 断裂特征
    Ⅴ型断裂 9-12%Cr钢BM 韧性断裂
    高应力 Ⅶ型断裂9-12%Cr钢FZ 脆性断裂
    低应力 Ⅳ型断裂 9-12%Cr钢HAZ 脆性断裂
    Ⅵ型断裂9-12%Cr钢沿FZ、
    HAZ扩展至BM
    混合断裂
    下载: 导出CSV

    表  2  DMWJs高温疲劳失效模式

    失效类型 温度和加载方式 失效位置 失效特征
    低周疲劳 恒定温度+循环载荷 FZ、9-12%Cr钢HAZ、BM 不同应变幅下,韧性断裂的BM与剪切断裂为主的HAZ或界面之间发生竞争失效
    第Ⅰ类蠕变-疲劳 恒定温度+保载时间+循环载荷 9-12%Cr钢HAZ、BM 蠕变应变和循环应变的交互作用,促进HAZ或BM以蠕变为主的失效
    第Ⅱ类蠕变-疲劳 非恒定温度+保载时间+循环载荷 FZ、9-12%Cr钢HAZ 蠕变应力和热应力交互作用,促进界面氧化缺口、HAZ中碳化物生长,导致疲劳开裂
    热疲劳 非恒定温度+恒定载荷 FZ 循环热应力促进界面处碳化物萌生疲劳裂纹并扩展
    下载: 导出CSV
  • [1] 王倩, 王卫良, 刘敏, 等. 超(超)临界燃煤发电技术发展与展望[J]. 热力发电, 2021, 50(2): 1-9. doi: 10.19666/j.rlfd.202007179

    WANG Qian, WANG Weiliang, LIU Min, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology[J]. Thermal Power Generation, 2021, 50(2): 1-9. doi: 10.19666/j.rlfd.202007179
    [2] 冯琰磊, 叶勇健. 630-650℃参数机组锅炉关键材料分析[J]. 电力勘测设计, 2019(7): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC201907007.htm

    FENG Yanlei, YE Yongjian. Analysis of key material for boiler of 630-650℃ parameter coal-fired units[J]. Electric Power Survey & Design, 2019(7): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC201907007.htm
    [3] 杨富. 新型耐热钢焊接[M]. 北京: 中国电力出版社, 2006.

    YANG Fu. The welding of new heat-resisting steels[M]. Beijing: China Electric Power Press, 2006.
    [4] SIEFERT J A, DAVID S A. Weldability and weld performance of candidate austenitic alloys for advanced ultrasupercritical fossil power plants[J]. Science and Technology of Welding and Joining, 2014, 19(4): 271-294. doi: 10.1179/1362171814Y.0000000197
    [5] 杨富. 我国超超临界机组金属与焊接的现状与展望[C/CD]//超超临界机组技术交流会, 2013.

    YANG Fu. Status and prospect of metal and welding in ultra supercritical unit in China[C/CD]//Ultra Supercritical Unit Technology Exchange Meeting, 2013.
    [6] GIANFRANCESCO A. Materials for ultra-supercritical and advanced ultra-supercritical power plants[M]. Cambridge: Woodhead Publishing, 2016.
    [7] 蔡文河, 严苏星. 电站重要金属部件的失效及其监督[M]. 北京: 中国电力出版社, 2009.

    CAI Wenhe, YAN Suxing. Failure and supervision of important metal components in power plant[M]. Beijing: China Electric Power Press, 2009.
    [8] ROBERTS D I, RYDER R H, GRUNLOH H J, et al. Dissimilar-weld failure analysis and development program[R]. Electric Power Research Inst, Materials Properties Council, 1989.
    [9] DOOLEY R B, STEPHENSON G G, TINKLER M J, et al. Ontario hydro experience with dissimilar metal welds in boiler tubing[J]. Welding Journal, 1982, 61(2): 45-49.
    [10] 石仁强, 王舒涛, 杨超, 等. 超超临界机组M/F-A异种钢焊接接头熔合线断裂分析[J]. 焊接技术, 2020, 49: 173-177. doi: 10.13846/j.cnki.cn12-1070/tg.2020.s1.050

    SHI Renqiang, WANG Shutao, YANG Chao, et al. Analysis of fusion line fracture of M/F-A dissimilar steel welded joints in ultra-supercritical units[J]. Welding Technology, 2020, 49: 173-177. doi: 10.13846/j.cnki.cn12-1070/tg.2020.s1.050
    [11] 楼杰. 1000MW机组高温再热器异种钢接头开裂原因分析及处理[J]. 东北电力技术, 2014, 35(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JISU201401012.htm

    LOU Jie. Analysis and treatment of cracking on dissimilar steel welding joints of high-temperature reheater for 1000 MW ultra super critical boiler[J]. Northest Electric Power Technology, 2014, 35(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JISU201401012.htm
    [12] 孟庆森, 韩培德, 杨世杰, 等. 异种钢焊接接头高温力学性能的研究[J]. 太原理工大学学报, 1997(1): 70-74. doi: 10.16355/j.cnki.issn1007-9432tyut.1997.01.015

    MENG Qingsen, HAN Peide, YANG Shijie, et al. A study on high-temperature mechanical property of F/A dissimilar metal welding joints[J]. Journal of Taiyuan University of Technology, 1997(1): 70-74. doi: 10.16355/j.cnki.issn1007-9432tyut.1997.01.015
    [13] REN S, LI S, WANG Y, et al. Predicting welding residual stress of a multi-pass P92 steel butt-welded joint with consideration of phase transformation and tempering effect[J]. Journal of Materials Engineering and Performance, 2019, 28(12): 7452-7463. doi: 10.1007/s11665-019-04470-9
    [14] ABE F, KERN T-U, VISWANATHAN R. Creep-resistant steels[M]. Cambridge : Woodhead Publishing, 2008.
    [15] 蔡志强, 林雪松, 邓永龙, 等. 高温再热器Super304H与T91异种钢接头开裂失效分析[J]. 四川电力技术, 2016, 39(2): 88-90. doi: 10.3969/j.issn.1003-6954.2016.02.021

    CAI Zhiqiang, LIN Xuesong, DENG Yonglong, et al. Failure analysis for the cracking of Super304H and T91 dissimilar steel welded joints of high-temperature reheater[J]. Sichuan Electric Power Technology, 2016, 39(2): 88-90. doi: 10.3969/j.issn.1003-6954.2016.02.021
    [16] 陈鑫, 蔡文河, 张坤, 等. 火电厂异种钢焊接接头早期失效研究现状[J]. 焊接, 2018(2): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201802005.htm

    CHEN Xin, CAI Wenhe, ZHANG Kun, et al. Research status of early failure of dissimilar steel welded joints in thermal power plants[J]. Welding & Joining, 2018(2): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201802005.htm
    [17] WANG X, WANG X, ZHANG Y L, et al. Microstructure and creep fracture behavior in HR3C/T92 dissimilar steel welds[J]. Materials Science and Engineering: A, 2021, 799: 140128. doi: 10.1016/j.msea.2020.140128
    [18] ZHAI X, DU J, LI L, et al. Creep behavior and damage evolution of T92/Super304H dissimilar weld joints[J]. Journal of Iron and Steel Research International, 2019, 26(7): 751-760. doi: 10.1007/s42243-019-00249-3
    [19] ZHANG Y, LI K, CAI Z, et al. Creep rupture properties of dissimilar metal weld between Inconel 617B and modified 9% Cr martensitic steel[J]. Materials Science and Engineering: A, 2019, 764: 138185. doi: 10.1016/j.msea.2019.138185
    [20] LAHA K, CHANDRAVATHI K, PARAMESWARAN P, et al. A comparison of creep rupture strength of ferritic/austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels[J]. Metallurgical and Materials Transactions A, 2012, 43(4): 1174-1186. doi: 10.1007/s11661-011-0957-8
    [21] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473. doi: 10.11900/0412.1961.2020.00140

    LI Kejian, ZHANG Yu, CAI Zhipeng. Fracture location shift of dissimilar metal welds under coupled thermal-stress effect[J]. Acta Metallurgica Sinica, 2020, 56(11): 1463-1473. doi: 10.11900/0412.1961.2020.00140
    [22] WEN J F, LIU Y, SRIVASTAVA A, et al. Environmentally enhanced creep crack growth by grain boundary cavitation under cyclic loading[J]. Acta Materialia, 2018, 153: 136-146. doi: 10.1016/j.actamat.2018.04.034
    [23] DING K, WEI T, FAN M, et al. Two stress rupture modes observed in alloy 617–9% Cr dissimilar welded joint[J]. Materials Letters, 2020, 260: 126978. doi: 10.1016/j.matlet.2019.126978
    [24] YAMASHITA T, TAKAYA S, NAGAE Y, et al. Factor analysis of interface failure mechanism for dissimilar weld joints[C]//Proc the 52nd Symp on Strength of Materials at High Temperatures The Society of Materials Science Japan, Kyoto. 2014: 80.
    [25] CAO J, GONG Y, YANG Z G, et al. Creep fracture behavior of dissimilar weld joints between T92 martensitic and HR3C austenitic steels[J]. International Journal of Pressure Vessels and Piping, 2011, 88(3): 94-98.
    [26] YAMAZAKI M, WATANABE T, HONGO H, et al. Creep rupture properties of welded joints of heat resistant steels[J]. Journal of Power and Energy Systems, 2008, 2(4): 1140-1149. doi: 10.1299/jpes.2.1140
    [27] EHRHARDT F, HOLDSWORTH S R, KÜHN I, et al. Creep fatigue crack development in dissimilar metal welded joints between steels and nickel based alloy[J]. Materials Research Innovations, 2013, 17(5): 327-331. doi: 10.1179/1433075X13Y.0000000139
    [28] GONG YI, CAO J, LINA J, et al. Assessment of creep rupture properties for dissimilar steels welded joints between T92 and HR3C[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34(2): 83-96.
    [29] YAGHI A H, HYDE T H, BECKER A A, et al. Finite element simulation of residual stresses induced by the dissimilar welding of a P92 steel pipe with weld metal IN625[J]. International Journal of Pressure Vessels and Piping, 2013, 111: 173-186.
    [30] YAGHI A H, HYDE T H, BECKER A A, et al. Finite element simulation of welding and residual stresses in a P91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment[J]. The Journal of Strain Analysis for Engineering Design, 2008, 43(5): 275-293. doi: 10.1243/03093247JSA372
    [31] ZHAO L, JING H, XU L, et al. Analysis of creep crack growth behavior of P92 steel welded joint by experiment and numerical simulation[J]. Materials Science and Engineering: A, 2012, 558: 119-128. doi: 10.1016/j.msea.2012.07.094
    [32] 姚兵印, 李太江, 刘福广, 等. HR3C/T91异种耐热钢焊接接头的力学性能及界面蠕变失效行为研究[J]. 中国电机工程学报, 2011, 31(11): 92-98. doi: 10.13334/j.0258-8013.pcsee.2011.11.003

    YAO Bingyin, LI Taijiang, LIU Fuguang, et al. Mechanical properties and interfacical creep failure behaviors between HR3C/T91 dissimilar heat-resistant steel welded joints[J]. Proceedings of The Chinese Society for Electrical Engineering, 2011, 31(11): 92-98. doi: 10.13334/j.0258-8013.pcsee.2011.11.003
    [33] 杜宝帅, 张忠文, 索帅, 等. HR3C/T92钢EPRI P87焊材异种钢接头的组织与性能[J]. 焊接技术, 2019, 48(S1): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ2019S1018.htm

    DU Baoshuai, ZHANG Zhongwen, SUO Shuai, et al. Microstructure and properties of HR3C/T92 steel EPRI P87 dissimilar steel joints[J]. Welding Technology, 2019, 48(S1): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ2019S1018.htm
    [34] FRANCIS J A, MAZUR W, BHADESHIA H. Review type Ⅳ cracking in ferritic power plant steels[J]. Materials Science and Technology, 2006, 22(12): 1387-1395. doi: 10.1179/174328406X148778
    [35] ABSON D J, ROTHWELL J S. Review of type Ⅳ cracking of weldments in 9–12%Cr creep strength enhanced ferritic steels[J]. International Materials Reviews, 2013, 58(8): 437-473. doi: 10.1179/1743280412Y.0000000016
    [36] WU G, DING K, WEI T, et al. Rupture behavior and fracture mode for Inconel 625–9% Cr steel dissimilar welded joints at high temperature[J]. Engineering Failure Analysis, 2021, 125: 105412. doi: 10.1016/j.engfailanal.2021.105412
    [37] KONDO M, TABUCHI M, TSUKAMOTO S, et al. Suppressing type Ⅳ failure via modification of heat affected zone microstructures using high boron content in 9Cr heat resistant steel welded joints[J]. Science and Technology of Welding and Joining, 2006, 11(2): 216-223. doi: 10.1179/174329306X89260
    [38] CAO J, GONG Y, ZHU K, et al. Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels[J]. Materials & Design, 2011, 32(5): 2763-2770.
    [39] DING K, QIAO S, LIU S, et al. Failure transition mechanism of stress rupture performance of the Inconel 625/9 pct Cr steel dissimilar welded joint[J]. Metallurgical and Materials Transactions A, 2019, 50(10): 4652-4664. doi: 10.1007/s11661-019-05372-0
    [40] 涂善东. 高温结构完整性原理[M]. 北京: 科学出版社, 2003.

    TU Shantung. High temperature structural integrity principle[M]. Beijing: Science Press, 2003.
    [41] SHIN K Y, LEE J W, HAN J M, et al. Transition of creep damage region in dissimilar welds between Inconel 740H Ni-based superalloy and P92 ferritic/martensitic steel[J]. Materials Characterization, 2018, 139: 144-152. doi: 10.1016/j.matchar.2018.02.039
    [42] DUPONT J N. Review of dissimilar metal welding for the NGNP helical-coil steam generator[R]. Idaho National Laboratory, 2010: 1-68.
    [43] KLUEH R L, KING J F. Austenitic stainless steel-ferritic steel weld joint failures[J]. Welding Research Supplement, 1982, 61(9): 302-311.
    [44] MATSUNAGA T, HONGO H, TABUCHI M. Interfacial failure in dissimilar weld joint of high boron 9% chromium steel and nickel-based alloy under high-temperature creep condition[J]. Materials Science and Engineering: A, 2017, 695: 302-308. doi: 10.1016/j.msea.2017.04.012
    [45] ROBERTS D I, RYDER R H, VISWANATHAN R. Performance of dissimilar welds in service[J]. Journal of Pressure Vessel Technology, 1985, 107(3): 247-254. doi: 10.1115/1.3264443
    [46] ORZOLEK S. Microstructural evolution of dissimilar metal welds involving Grade 91[D]. Bethlehem: Lehigh University, 2018.
    [47] 李克俭, 蔡志鹏, 李轶非, 等. 碳迁移对9%Cr和2.25%Cr异种钢焊接接头高温韧性的影响[J]. 机械工程学报, 2015, 51(16): 150-155. doi: 10.3901/JME.2015.16.150

    LI Kejian, CAI Zhipeng, LI Yifei, et al. Influence of carbon migration on the toughness of heat affected zone of 9%Cr+2.25%Cr dissimilar welds at high temperature[J]. Journal of Mechanical Engineering, 2015, 51(16): 150-155. doi: 10.3901/JME.2015.16.150
    [48] 李克俭, 蔡志鹏, 李轶非, 等. 长期高温时效对有碳迁移发生的焊接接头的影响[J]. 清华大学学报(自然科学版), 2015, 55(10): 1051-1055. doi: 10.16511/j.cnki.qhdxxb.2015.22.021

    LI Kejian, CAI Zhipeng, LI Yifei, et al. Influence of long-term aging atelevated temperature on welds with carbon migration[J]. Journal of Tsinghua University (Science & Technology), 2015, 55(10): 1051-1055. doi: 10.16511/j.cnki.qhdxxb.2015.22.021
    [49] WANG Y, SHAO C, FAN M, et al. Effect of solidified grain boundary on interfacial creep failure behavior for steel/nickel dissimilar metal welded joint[J]. Materials Science and Engineering: A, 2021, 803: 140482. doi: 10.1016/j.msea.2020.140482
    [50] MISHNEV R, DUDOVA N, KAIBYSHEV R. On the origin of the superior long-term creep resistance of a 10% Cr steel[J]. Materials Science and Engineering: A, 2018, 713: 161-173. doi: 10.1016/j.msea.2017.12.066
    [51] CHU T, XU H, LI Z, et al. Investigation of intrinsic correlation between microstructure evolution and mechanical properties for nickel-based weld metal[J]. Materials & Design, 2019, 165: 107595.
    [52] CLARK J. Investigating chemical and microstructural evolution at dissimilar metal welds[D]. Nottingham: University of Nottingham, 2015.
    [53] KUMAR S, PANDEY C, GOYAL A. A microstructural and mechanical behavior study of heterogeneous P91 welded joint[J]. International Journal of Pressure Vessels and Piping, 2020, 185: 104128. doi: 10.1016/j.ijpvp.2020.104128
    [54] PANDEY C, MAHAPATRA M M, KUMAR P, et al. Effect of post weld heat treatments on microstructure evolution and type Ⅳ cracking behavior of the P91 steel welds joint[J]. Journal of Materials Processing Technology, 2019, 266: 140-154. doi: 10.1016/j.jmatprotec.2018.10.024
    [55] FALAT L, ČIRIPOVÁ L, KEPIČ J, et al. Correlation between microstructure and creep performance of martensitic/austenitic transition weldment in dependence of its post-weld heat treatment[J]. Engineering Failure Analysis, 2014, 40: 141-152. doi: 10.1016/j.engfailanal.2014.02.018
    [56] 宋晓梅. 残余应力对不同几何和材料拘束试样蠕变裂纹起裂和扩展行为的影响[D]. 上海: 华东理工大学, 2016.

    SONG Xiaomei. Effect of residual stress on creep crack initiation and growth for specimens with different geometric and material constraints[D]. Shanghai: East China University of Science and Technology, 2016.
    [57] 张国栋, 周昌玉. 焊接接头残余应力及蠕变损伤的有限元模拟[J]. 金属学报, 2008(7): 848-852. doi: 10.3321/j.issn:0412-1961.2008.07.015

    ZHANG Guodong, ZHOU Changyu. Finite element simulation of residual stress and creep damage of welded joints[J]. Acta Metallurgica Sinica, 2008(7): 848-852. doi: 10.3321/j.issn:0412-1961.2008.07.015
    [58] 许乐, 温建锋, 涂善东. P92钢焊接接头蠕变损伤与裂纹扩展数值模拟[J]. 焊接学报, 2019, 40(8): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201908014.htm

    XU Le, WEN Jianfeng, TU Shantung. Numerical simulations of creep damage and crack growth in P92 steel welded joint[J]. Transactions of the China Welding Institution, 2019, 40(8): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201908014.htm
    [59] SABER M. Experimental and finite element studies of creep and creep crack growth in P91 and P92 weldments[D]. Nottingham: University of Nottingham, 2011.
    [60] 刘德勇. TP347H/G102末级过热器异种钢焊缝失效分析及处理[J]. 金属加工(热加工), 2020(8): 55-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JXRG202008019.htm

    LIU Deyong. Failure analysis and treatment of dissimilar steel weld of TP347H/G102 final superheater[J]. Machinist Metal Forming, 2020(8): 55-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JXRG202008019.htm
    [61] 李萌盛, 邹德安. 电站锅炉异种钢焊接接头中的热疲劳现象研究[J]. 热力发电, 1997(6): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD199706009.htm

    LI Mengsheng, ZHOU Dean. Study on thermal fatigue in welded joints of dissimilar steel for power plant boiler[J]. Thermal Power Generation, 1997(6): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD199706009.htm
    [62] WANG Y, SHAO C, CUI H, et al. Failure competition behavior of 9Cr/617 dissimilar welded joint during LCF test at elevated temperature[J]. Materials Science and Engineering: A, 2020, 773: 138810. doi: 10.1016/j.msea.2019.138810
    [63] LEE H Y, LEE S H, KIM J B, et al. Creep–fatigue damage for a structure with dissimilar metal welds of modified 9Cr–1Mo steel and 316L stainless steel[J]. International Journal of Fatigue, 2007, 29(9-11): 1868-1879. doi: 10.1016/j.ijfatigue.2007.02.009
    [64] KANG J, WANG Q B, WANG Z C, et al. Fatigue fracture mechanism of T92/HR3C dissimilar metal weld joints at elevated temperature[J]. Materials Characterization, 2022, 190: 112081.
    [65] FRIEDMANN V, SIEGELE D. Damage behaviour of nickel-based transition welds under cyclic thermomechanical loading[J]. Materials at High Temperatures, 2010, 27(1): 35-43.
    [66] WANG H T, WANG G Z, XUAN F Z, et al. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant[J]. Engineering Failure Analysis, 2013, 28: 134-148.
    [67] WANG S, DING J, MING H, et al. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET[J]. Materials Characterization, 2015, 100: 50-60.
    [68] NAGESHA A, KANNAN R, SASTRY G V S, et al. Isothermal and thermomechanical fatigue studies on a modified 9Cr–1Mo ferritic martensitic steel[J]. Materials Science and Engineering: A, 2012, 554: 95-104.
    [69] RAMESH M, LEBER H J, JANSSENS K G F, et al. Thermomechanical and isothermal fatigue behavior of 347 and 316L austenitic stainless tube and pipe steels[J]. International Journal of Fatigue, 2011, 33(5): 683-691.
    [70] 周红伟. 超(超)临界机组用钢的高温低周疲劳行为研究[D]. 南京: 东南大学, 2015.

    ZHOU Hongwei. Study on high temperature low-cycle fatigue behavior for steels used in ultra-supercritical boilers[D]. Nanjing: Southeast University, 2015.
    [71] PENSO J A, HAZIME R, NUNGESSER S, et al. Comparison of creep-fatigue fitness for service assessment methods for ferritic-austenitic dissimilar welds[C]//Pressure Vessels and Piping Conference. 2011, 44533: 739-747.
    [72] OKAZAKI M, MUTOH Y, YAMAGUCHI M. Creep-fatigue fracture of dissimilar metal electron beam welded joints at elevated temperature[J]. Journal of Engineering Materials & Technology, 1988, 110(3): 212-218.
    [73] FRIEDMANN V, SIEGELE D. Damage behaviour of nickel-based transition welds under cyclic thermomechanical loading[J]. Materials at High Temperatures, 2010, 27(1): 35-43.
    [74] SIREESHA M, ALBERT S K, SUNDARESAN S. Thermal cycling of transition joints between modified 9Cr–1Mo steel and alloy 800 for steam generator application[J]. International Journal of Pressure Vessels and Piping, 2002, 79(12): 819-827.
    [75] WANG H T, WANG G Z, XUAN F Z, et al. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint[J]. Materials & Design, 2013, 44: 179-189.
    [76] 涂善东, 轩福贞, 王卫泽. 高温蠕变与断裂评价的若干关键问题[J]. 金属学报, 2009, 45(7): 781-787. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200907003.htm

    TU Shantung, XUAN Fuzhen, WANG Weize. Some critical issues in creep and fracture assessment at high temperature[J]. Acta Metallurgica Sinica, 2009, 45(7): 781-787. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200907003.htm
    [77] RABOTNOV Y N. Creep problems in structural members[M]. Amsterdam: North-Holland, 1969.
    [78] 温建锋, 轩福贞, 涂善东. 高温构件蠕变损伤与裂纹扩展预测研究新进展[J]. 压力容器, 2019, 36(2): 38-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YLRQ201902007.htm

    WEN Jianfeng, XUAN Fuzhen, TU Shantung. Advance in predictions of creep damage and crack growth in components under high temperatures[J]. Pressure Vessel Technology, 2019, 36(2): 38-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YLRQ201902007.htm
    [79] WEN J F, TU S T, GAO X L, et al. New model for creep damage analysis and its application to creep crack growth simulations[J]. Materials Science and Technology, 2014, 30(1): 32-37.
    [80] CHEN G, WANG G Z, XUAN F Z, et al. Mismatch effect in creep properties on creep crack growth behavior in welded joints[J]. Materials & Design, 2014, 63: 600-608.
    [81] 涂善东, 巩建鸣, 凌祥. 焊缝界面对蠕变断裂力学参量的影响[J]. 焊接学报, 2000(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB200002000.htm

    TU Shantung, GONG Jianmíng, LING Xiang. Effect of weld interface on time-dependent fracture mechanics parameters[J]. Transactions of the China Welding Institution, 2000(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB200002000.htm
    [82] COCKS A F, ASHBY M F. Intergranular fracture during power-law creep under multiaxial stresses[J]. Metal Science, 1980, 8(9): 395-402.
    [83] LEE H Y, LEE S H, KIM J B, et al. Creep–fatigue damage for a structure with dissimilar metal welds of modified 9Cr–1Mo steel and 316L stainless steel[J]. International Journal of Fatigue, 2007, 29(9-11): 1868-1879.
    [84] HU J, FUKAHORI T, IGARI T, et al. Modelling of creep rupture of ferritic/austenitic dissimilar weld interfaces under mode I fracture[J]. Engineering Fracture Mechanics, 2018, 191: 344-364.
    [85] 凌堃. 基于三材料模型的含HAZ裂纹非匹配焊接接头的断裂评定方法[D]. 上海: 华东理工大学, 2015.

    LING Kun. Fracture assessment procedure of mismatching welded joint with HAZ cracks based on tri-material model[D]. East China University of Science and Technology, 2015.
    [86] CHEN G, WANG G Z, ZHANG J W, et al. Effects of initial crack positions and load levels on creep failure behavior in P92 steel welded joint[J]. Engineering Failure Analysis, 2015, 47: 56-66.
    [87] KIM N H, OH C S, KIM Y J, et al. Creep failure simulations of 316H at 550 C: Part Ⅱ–effects of specimen geometry and loading mode[J]. Engineering Fracture Mechanics, 2013, 105: 169-181.
    [88] YATOMI M, TABUCH M. Issues relating to numerical modelling of creep crack growth[J]. Engineering Fracture Mechanics, 2010, 77(15): 3043-3052.
    [89] GOLDENBERG B. A thermodynamic theory of short-term and creep rupture strength of materials[J]. Materials Science & Engineering A, 2005, 419(2): 168-171.
    [90] BAI X L, ZHANG Q, CHEN G H, et al. High temperature tensile test and creep rupture strength prediction of T92/Super304H dissimilar steel weld joints[J]. Materials at High Temperatures, 2014, 31(1): 69-75.
    [91] MANSON S, HAFERD A M. A linear time-temperature re-lation for extrapolation of creep and stress-rupturedata[R]. NACA TN 2890. National Advisory Com-mittee for Aeronautics. United States, 1953.
    [92] CHEN G H, SONG Y M, WANG J Q, et al. High-temperature short-term tensile test and creep rupture strength prediction of the T92/TP347H dissimilar steel weld joints[J]. Engineering Failure Analysis, 2012, 26: 220-229.
    [93] 石仁强, 王舒涛, 杨超, 等. 超超临界机组M/F-A异种钢焊接接头熔合线断裂分析[J]. 焊接技术, 2020, 49(S1): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ2020S1051.htm

    SHI Renqiang, WANG Shutao, YANG Chao, et al. Analysis of fusion line fracture of M/F-A dissimilar steel welded joints in ultra-supercritical units[J]. Welding Technology, 2020, 49(S1): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ2020S1051.htm
    [94] 陈鑫, 蔡文河, 张坤, 等. 火电厂异种钢焊接接头早期失效研究现状[J]. 焊接, 2018(2): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201802005.htm

    CHEN Xin, CAI Wenhe, ZHANG Kun, et al. Research status of early failure of dissimilar steel welded joints in thermal power plants[J]. Welding & Joining, 2018(2): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HAJA201802005.htm
    [95] HU J, FUKAHORI T, IGARI T, et al. An evaluation of creep rupture strength of ferritic/austenitic dissimilar weld interfaces using cohesive zone modelling[J]. Procedia Structural Integrity, 2016, 2: 934-941.
    [96] 宋有明. T92/HR3C、T92/TP347H异种钢焊接接头的髙温组织结构与力学性能的研究[D]. 合肥: 合肥工业大学, 2012.

    SONG Youming. Studies on high-temperature microstrucres and mechanical properties of the T92/HR3C and T92-TP247H dissimilar steel weld joints[D]. Hefei: Hefei University of Technology, 2012.
    [97] YAN W, WANG W, SHAN Y, et al. 9-12Cr heat-resistant steels[M]. London: Springer, 2015.
    [98] FAN K, WANG G Z, XUAN F Z, et al. Local fracture resistance behavior of interface regions in a dissimilar metal welded joint[J]. Engineering Fracture Mechanics, 2015, 136: 279-291.
    [99] GONG N, WANG G Z, XUAN F Z, et al. Effects of initial crack location on failure assessment curves in dissimilar metal weld joints in nuclear power plants[J]. Journal of Pressure Vessel Technology, 2012, 134(6): 1-7.
    [100] CHEN G, WANG G Z, XUAN F Z, et al. Mismatch effect in creep properties on creep crack growth behavior in welded joints[J]. Materials & Design, 2014, 63: 600-608.
    [101] NIKBIN K. Justification for meso-scale modelling in quantifying constraint during creep crack growth[J]. Materials Science and Engineering: A, 2004, 365(1): 107-113.
    [102] WEN J F, TU S T. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014, 123: 197-210.
    [103] SPINDLER M W. The multiaxial creep ductility of austenitic stainless steels[J]. Fatigue & Fracture of Engi-neering Materials & Structures, 2004, 27(4): 273-281.
    [104] WICHTMANN A. Evaluation of creep damage due to void growth under triaxial stress states in the design of steam turbine components[J]. JSME International Journal Series A Solid Mechanics and Material Engineering, 2002, 45(1): 72-76.
    [105] MCCLINTOCK F A. A criterion for ductile fracture by the growth of holes[J]. Journal of Applied Mechanics, 1968, 35(2): 363-371.
    [106] ZHANG J W, WANG G Z, XUAN F Z, et al. Effect of stress dependent creep ductility on creep crack growth behaviour of steels for wide range of C*[J]. Materials at High Temperatures, 2015, 32(4): 369-376.
    [107] YATOMI M, NIKBIN K M, O'DOWD N P. Creep crack growth prediction using a damage based approach[J]. International Journal of Pressure Vessels and Piping, 2003, 80(7-8): 573-583.
    [108] FAN K, WANG G Z, XUAN F Z, et al. Local failure behavior of a dissimilar metal interface region with mechanical heterogeneity[J]. Engineering Failure Analysis, 2016, 59: 419-433.
    [109] LARSON F R, MILLER J. A time-temperature relationshipfor rupture and creep stresses[J]. Transaction of the ASME, 1952, 74: 765-775.
    [110] WEBSTER G A, HOLDSWORTH S R, LOVEDAY M S, et al. A code of practice for conducting notched bar creep rupture tests and for interpreting the data[J]. Fatigue & Fracture of Engineering Materials and Structures, 2001, 27(4): 319-342.
    [111] PEÑUELAS I, BETEGÓN C, RODRÍGUEZ C. A ductile failure model applied to the determination of the fracture toughness of welded joints. Numerical simulation and experimental validation[J]. Engineering Fracture Mechanics, 2006, 73(18): 2756-2773.
    [112] WANG H T, WANG G Z, XUAN F Z, et al. Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint[J]. Nuclear Engineering and Design, 2011, 241(8): 3234-3243.
    [113] 史春元, 田锡唐, 陈字刚, 等. 异种钢接头沿界面蠕变脆断的力学控制参量[J]. 焊接学报, 1995(4): 185-189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB504.000.htm

    SHI Chunyuan, TIAN Xitang, CHEN Zigang, et al. Mechanical control parameters of creep brittle fracture along interface of dissimilar steel joints[J]. Transactions of the China Welding Institution, 1995(4): 185-189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB504.000.htm
    [114] 朱波, 王文科, 郭洋, 等. 12Cr/30Cr2Ni4MoV异种转子钢焊接接头微区冲击韧性研究[J]. 机械工程学报, 2021, 57(2): 53-61. doi: 10.3901/JME.2021.02.053

    ZHU Bo, WANG Wenke, GUO Yang, et al. Research on impact toughness in microzones of 12Cr/30Cr2Ni4MoV dissimilar rotor steel welded joint[J]. Journal of Mechanical Engineering, 2021, 57(2): 53-61. doi: 10.3901/JME.2021.02.053
    [115] KI H, KIM C S, JEON Y C, et al. Fatigue crack growth characteristics in dissimilar weld metal joint[C]//Materials Science Forum. Trans Tech Publications Ltd, 2008, 580: 593-596.
    [116] AHMAD H W, HWANG J H, LEE J H, et al. Welding residual stress analysis and fatigue strength assessment of multi-pass dissimilar material welded joint between Alloy 617 and 12Cr steel[J]. Metals, 2018, 8(11): 1-11.
    [117] LEE J, HWANG J, BAE D. Welding residual stress analysis and fatigue strength assessment at elevated temperature for multi-pass dissimilar material weld between alloy 617 and P92 steel[J]. Metals and Materials International, 2018, 24(4): 877-885.
    [118] MASOOD CHAUDRY U, AHMAD H W, TARIQ M R, et al. Effect of post weld heat treatment on the microstructure and electrochemical characteristics of dissimilar material welded by butter method[J]. Materials, 2020, 13(20): 4512.
    [119] WANG Q B, XIN R S, WANG Z C, et al. Microstructure and its effect on high temperature tensile properties of T92/HR3C dissimilar weld joints[J]. Journal of Manufacturing Processes, 2022, 82: 792-799.
    [120] SEO W G, SUH J Y, SHIM J H, et al. Effect of post-weld heat treatment on the microstructure and hardness of P92 steel in IN740H/P92 dissimilar weld joints[J]. Materials Characterization, 2020, 160: 110083.
    [121] 尹少华, 刘同干, 周龙, 等. 12Cr1MoV与15CrMo异种钢焊接及热处理工艺研究及应用[J]. 焊接技术, 2021, 50(4): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ202104010.htm

    YIN Shaohua, LIU Tonggan, ZHOU Long, et al. Study and application of welding and heat treatment process of 12Cr1MoV and 15CrMo dissimilar steels[J]. Welding Technology, 2021, 50(4): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ202104010.htm
    [122] 张俊平. 管道异种钢的焊接热处理问题研究[C]//建筑科技与管理学术交流会论文集, 2019年7月, 2019: 186-187.

    ZHANG Junping. Study on welding heat treatment of dissimilar steel in pipeline[C]//Proceedings of the Academic Exchange Conference on Construction Technology and Management, July 2019, 2019: 186-187.
    [123] 詹先武. T91与12Cr1MoVG异种钢焊后热处理分析及应用[J]. 焊接技术, 2020, 49(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ2020S1001.htm

    ZHAN Xianwu. Analysis and application of post-weld heat treatment of T91 and 12Cr1MoVG dissimilar steels[J]. Welding Technology, 2020, 49(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ2020S1001.htm
  • 加载中
图(29) / 表(2)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-20
  • 修回日期:  2022-09-20
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回