留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热-机荷载作用的P-FGM扁球壳跳跃屈曲分析

郭冬梅 龚雪蓓 赵伟东

郭冬梅, 龚雪蓓, 赵伟东. 热-机荷载作用的P-FGM扁球壳跳跃屈曲分析[J]. 机械工程学报, 2022, 58(24): 111-120. doi: 10.3901/JME.2022.24.111
引用本文: 郭冬梅, 龚雪蓓, 赵伟东. 热-机荷载作用的P-FGM扁球壳跳跃屈曲分析[J]. 机械工程学报, 2022, 58(24): 111-120. doi: 10.3901/JME.2022.24.111
GUO Dongmei, GONG Xuebei, ZHAO Weidong. Snap-through Buckling Analysis of P-FGM Shallow Spherical Shells under Thermomechanical Loads[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 111-120. doi: 10.3901/JME.2022.24.111
Citation: GUO Dongmei, GONG Xuebei, ZHAO Weidong. Snap-through Buckling Analysis of P-FGM Shallow Spherical Shells under Thermomechanical Loads[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 111-120. doi: 10.3901/JME.2022.24.111

热-机荷载作用的P-FGM扁球壳跳跃屈曲分析

doi: 10.3901/JME.2022.24.111
详细信息
    作者简介:

    郭冬梅,女,1996年出生,硕士研究生。主要研究方向为功能梯度材料结构的力学行为。E-mail:948921494@qq.com

    通讯作者:

    赵伟东(通信作者),男,1972年出生,硕士,副教授,硕士研究生导师。主要研究方向为结构非线性振动和结构屈曲分析。E-mail:10773243@qq.com

  • 中图分类号: O343

Snap-through Buckling Analysis of P-FGM Shallow Spherical Shells under Thermomechanical Loads

  • 摘要: 基于经典壳体理论和Sanders非线性应变-位移关系,导出了幂律型功能梯度材料(P-FGM)扁球壳在热-机械荷载作用下的几何非线性常微分控制方程。推导过程考虑了沿厚度存在一维热传导温度场和法向均布荷载作用。采用打靶法求解了由控制方程和固定夹紧边界条件构成的两点边值问题。得到了FGM扁球壳的一些典型的屈曲平衡路径和双稳态构形。对热-机械荷载作用的FGM扁球壳的跳跃屈曲行为进行了参数影响分析。结果表明:温度上升时,球壳上临界荷载显著增加、下临界荷载变化不明显。梯度指数增加时,球壳上、下临界荷载均显著减小。组分材料模量增加时,球壳上、下临界荷载均显著增加。当底圆半径和厚度给定时,随壳体中面曲率半径增加,球壳上、下临界荷载均显著增加。当中面曲率半径和厚度给定时,随底圆半径增加,球壳下临界荷载显著减小,上临界荷载几乎不变。

     

    基于经典壳体理论和Sanders非线性应变-位移关系,导出了幂律型功能梯度材料(P-FGM)扁球壳在热-机械荷载作用下的几何非线性常微分控制方程。推导过程考虑了沿厚度存在一维热传导温度场和法向均布荷载作用。采用打靶法求解了由控制方程和固定夹紧边界条件构成的两点边值问题。得到了FGM扁球壳的一些典型的屈曲平衡路径和双稳态构形。对热-机械荷载作用的FGM扁球壳的跳跃屈曲行为进行了参数影响分析。结果表明:温度上升时,球壳上临界荷载显著增加、下临界荷载变化不明显。梯度指数增加时,球壳上、下临界荷载均显著减小。组分材料模量增加时,球壳上、下临界荷载均显著增加。当底圆半径和厚度给定时,随壳体中面曲率半径增加,球壳上、下临界荷载均显著增加。当中面曲率半径和厚度给定时,随底圆半径增加,球壳下临界荷载显著减小,上临界荷载几乎不变。
  • 图  功能梯度扁球壳的示意图

    图  不同横向温度场对应的FGM扁球壳荷载-挠度曲线

    图  不同横向非均匀温度场对应的FGM扁球壳荷载-挠度曲线

    图  梯度指数k对沿横向非均匀温度场作用的FGM扁球壳荷载-挠度曲线的影响

    图  陶瓷组分材料对沿横向非均匀温度场作用的FGM扁球壳荷载-挠度曲线的影响

    图  曲率半径R对沿横向非均匀温度场作用的FGM扁球壳荷载-挠度曲线的影响

    图  底圆半径a对沿横向非均匀温度场作用的FGM扁球壳荷载-挠度曲线的影响

    图  不同梯度指数对应的FGM扁球壳的双稳态位形

    图  不同陶瓷组分材料对应的FGM扁球壳的双稳态位形

    图  10  不同非均匀温度场对应的FGM扁球壳的双稳态位形

    表  1  功能梯度材料扁球壳组分材料性能

    特性参数 铝(Al) 粘土(Al2O3) 氮化硅(Si3N4) 氧化锆(ZrO2)
    弹性模量E/GPa 70 380 300 151
    热膨胀系数α/K−1 23×10−6 7.4×10−6 3.1×10−6 10×10−6
    导热系数K/[W/(m·K)] 204 10.4 15 2.09
    泊松比v 0.3 0.3 0.3 0.3
    下载: 导出CSV

    表  2  各向同性扁球壳的无量纲外侧压力Q对应的无量纲中心挠度w(0)

    挠度$ w(0) $ $ {{K = {a^2}\sqrt {12(1 - {v^2})} } \mathord{\left/ {\vphantom {{K = {a^2}\sqrt {12(1 - {v^2})} } {Rh}}} \right. } {Rh}} $
    16 20
    文献[25] 本文 文献[25] 本文
    0.100 64.985 83 65.135 36 101.431 08 101.693 18
    0.300 166.073 11 166.426 41 263.520 99 264.143 79
    0.600 254.774 03 255.260 21 409.333 98 410.151 89
    0.964 289.156 45 458.060 30 458.871 95
    1.028 289.191 16 289.723 92 457.801 18
    2.000 243.607 78 244.214 86 366.196 05 367.096 63
    注:表中的挠度取向内侧为正。
    下载: 导出CSV
  • [1] KOIZUMI M. The concept of FGM[J]. Ceramic Transaction, Functionally Gradient Materials, 1993, 34: 3-10.
    [2] REDDY J N, CHIN C D. Themomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses, 1998, 21(6): 593-626. doi: 10.1080/01495739808956165
    [3] SHEN Huishen. Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments[J]. International Journal of Mechanical Sciences, 2002, 44(3): 561-584. doi: 10.1016/S0020-7403(01)00103-5
    [4] WOO J, MEGUID S A, LIEW K M. Thermomechanical postbuckling analysis of functionally graded plates and shallow cylindrical shells[J]. Acta Mechanica, 2003, 165(1-2): 99-115. doi: 10.1007/s00707-003-0035-4
    [5] TRABELSI S, FRIKHA A, ZGHAL S, et al. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells[J]. Engineering Structures, 2019, 178: 444-459. doi: 10.1016/j.engstruct.2018.10.047
    [6] LEVYAKOV S V, KUZNETSOV V V. Application of triangular element invariants for geometrically nonlinear analysis of functionally graded shells[J]. Computational Mechanics, 2011, 48(4): 499-513. doi: 10.1007/s00466-011-0603-8
    [7] TRABELSI S, ZGHAL S, DAMMAK F. Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(5): 233. doi: 10.1007/s40430-020-02314-5
    [8] 梁斌, 陈金晓, 李戎, 等. 水下环肋功能梯度材料圆柱壳稳定性研究[J]. 振动与冲击, 2017, 36(13): 80-85 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201713014.htm

    LIANG Bin, CHEN Jinxiao, LI Rong, et al. Stability of a submerged ring-stiffened FGM cylindrical shell[J]. Journal of Vibration and Shock, 2017, 36(13): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201713014.htm
    [9] MA L S, WANG T J. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings[J]. International Journal of Solids and Structures, 2003, 40(13-14): 3311-3330. doi: 10.1016/S0020-7683(03)00118-5
    [10] NAJAFIZADEH M M, HEDAYATI B. Refined theory for thermoelastic stability of functionally graded circular plates[J]. Journal of Thermal Stresses, 2004, 27(9): 857-880. doi: 10.1080/01495730490486532
    [11] VON KARMAN T, TSIEN H S. The buckling of spheric-al shells by external pressure[J]. Journal of the Aeronautical Sciences, 1939, 7(2): 43-50. doi: 10.2514/8.1019
    [12] WOO J, MEGUID S A. Nonlinear analysis of functionally graded plates and shallow shells[J]. International Journal of Solids and Structures, 2001, 38(42): 7409-7421.
    [13] 苗亚男, 李忱, 王海任, 等. 功能梯度材料薄球壳热屈曲问题[J]. 复合材料学报, 2017, 35(5): 1023-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201705013.htm

    MIAO Yanan, LI Chen, WANG Hairen, et al. Thermal buckling of thin spherical shells with functionally graded materials[J]. Acta Materiae Compositae Sinica, 2017, 35(5): 1023-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201705013.htm
    [14] DUC N D, QUANG V D, ANH V T T. The nonlinear dynamic and vibration of the S-FGM shallow spherical shells resting on an elastic foundation including temperature effects[J]. International Journal of Mechanical Sciences, 2017, 123: 54-63 doi: 10.1016/j.ijmecsci.2017.01.043
    [15] 李富根, 聂国华. S型功能梯度扁球壳非线性屈曲的渐近分析[J]. 力学季刊, 2018, 39(3): 494-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201803005.htm

    Ll Fugen, NIE Guohua. Asymptotic buckling analysis of S-FGM shallow spherical shells[J]. Chinese Quarterly of Mechanics, 2018, 39(3): 494-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201803005.htm
    [16] SHAHSIAH R, ESLAMI M R, NAJ R. Thermal instability of functionally graded shallow spherical shell[J]. Journal of Thermal Stresses, 2006, 29(8): 771-790. doi: 10.1080/01495730600705406
    [17] PRAKASH T, SUNDARARAJAN N, GANAPATHI M. On the nonlinear axisymmetric dynamic buckling behavior of clamped functionally graded spherical caps[J]. Journal of Sound and Vibration, 2007, 299(1-2): 36-43. doi: 10.1016/j.jsv.2006.06.060
    [18] GANAPATHI M. Dynamic stability characteristics of functionally graded materials shallow spherical shells[J]. Composite Structures, 2007, 79(3): 338-343. doi: 10.1016/j.compstruct.2006.01.012
    [19] BICH D H, VAN TUNG H. Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects[J]. International Journal of Non-Linear Mechanics, 2011, 46(9): 1195-1204. doi: 10.1016/j.ijnonlinmec.2011.05.015
    [20] BOROUJERDY M S, ESLAM M R. Nonlinear axisymmetric thermomechanical response of piezo-FGM shallow spherical shells[J]. Archive of Applied Mechanics, 2013, 83(12): 1681-1693. doi: 10.1007/s00419-013-0769-y
    [21] 赵伟东, 高士武, 马宏伟. 功能梯度扁球壳在热-机械荷载作用下的屈曲分析[J]. 工程力学, 2018, 35(12): 220-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201812028.htm

    ZHAO Weidong, GAO Shiwu, MA Hongwei. Thermo-mechanical buckling analysis of functionally graded shallow spherical shells[J]. Engineering Mechanics, 2018, 35(12): 220-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201812028.htm
    [22] SHARIAT B A S, ESLAMI M R. Thermal buckling of imperfect functionally graded plates[J]. International Journal of Solids and Structures, 2005, 43(14-15): 4082-4096.
    [23] VAN DO V N, LEE C H. Nonlinear thermal buckling analyses of functionally graded circular plates using higher-order shear deformation theory with a new transverse shear function and an enhanced mesh-free method[J]. Acta Mechanica, 2018, 229(9): 3787-3811.
    [24] ZHAO Weidong. Nonlinear axisymmetric thermom echanical response of FGM circular plates[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 360.
    [25] 严圣平. 扁球壳在均布压力作用下的非线性弯曲问题[J]. 应用力学学报, 1988, 5(3): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198803002.htm

    YAN Shengping. Nonlinear bending of shallow spherical shells under uniform distribution pressure[J]. Chinese Journal of Applied Mechanics, 1988, 5(3): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198803002.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-08-10
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回