留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池碰撞安全仿真方法的研究进展与展望

李红刚 张超 曹俊超 周典 张美合

李红刚, 张超, 曹俊超, 周典, 张美合. 锂离子电池碰撞安全仿真方法的研究进展与展望[J]. 机械工程学报, 2022, 58(24): 121-144. doi: 10.3901/JME.2022.24.121
引用本文: 李红刚, 张超, 曹俊超, 周典, 张美合. 锂离子电池碰撞安全仿真方法的研究进展与展望[J]. 机械工程学报, 2022, 58(24): 121-144. doi: 10.3901/JME.2022.24.121
LI Honggang, ZHANG Chao, CAO Junchao, ZHOU Dian, ZHANG Meihe. Advances and Perspectives on Modeling Methods for Collision Safety of Lithium-ion Batteries[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 121-144. doi: 10.3901/JME.2022.24.121
Citation: LI Honggang, ZHANG Chao, CAO Junchao, ZHOU Dian, ZHANG Meihe. Advances and Perspectives on Modeling Methods for Collision Safety of Lithium-ion Batteries[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 121-144. doi: 10.3901/JME.2022.24.121

锂离子电池碰撞安全仿真方法的研究进展与展望

doi: 10.3901/JME.2022.24.121
基金项目: 

国家自然科学基金资助项目 51706187

详细信息
    作者简介:

    李红刚,男,1992年出生,博士研究生。主要研究方向为锂离子电池碰撞安全、多尺度多场耦合仿真方法、冲击动力学。E-mail:honggangli@mail.nwpu.edu.cn

    通讯作者:

    张超(通信作者),男,1987年出生,博士,教授,博士研究生导师。主要研究方向为复合材料力学、锂离子电池碰撞安全、冲击动力学、多尺度多场耦合仿真。E-mail:chaozhang@nwpu.edu.cn

  • 中图分类号: TM912

Advances and Perspectives on Modeling Methods for Collision Safety of Lithium-ion Batteries

  • 摘要: 锂离子电池以优异的电化学储能和循环性能,已成为电动汽车和电动飞机等新能源装备的主要动力源。然而,其受外部冲击、碰撞等载荷导致的结构失效、内短路、热失控以及起火/爆炸等安全问题,严重制约了其进一步的发展与应用。详细总结了锂离子电池结构特性和电池机械滥用试验方法,阐述了锂离子电池在机械滥用下从力学失效到内短路和热失控的多场耦合失效机理。在此基础上,系统地综述了近年来国内外学者在锂离子电池碰撞安全仿真方法方面的研究进展,从材料本构建模、电池单体的力学建模与仿真、多场耦合仿真方法等方面总结了仿真方法的研究现状。梳理了各类仿真方法的特点、适用性与局限性,并重点讨论建模方法、仿真精度和效率等关键问题。最后,对锂离子电池碰撞安全仿真方法存在的瓶颈问题和未来的发展趋势进行展望。可为锂离子电池的碰撞失效机理研究、建模仿真和安全设计提供系统的参考与指导。

     

    锂离子电池以优异的电化学储能和循环性能,已成为电动汽车和电动飞机等新能源装备的主要动力源。然而,其受外部冲击、碰撞等载荷导致的结构失效、内短路、热失控以及起火/爆炸等安全问题,严重制约了其进一步的发展与应用。详细总结了锂离子电池结构特性和电池机械滥用试验方法,阐述了锂离子电池在机械滥用下从力学失效到内短路和热失控的多场耦合失效机理。在此基础上,系统地综述了近年来国内外学者在锂离子电池碰撞安全仿真方法方面的研究进展,从材料本构建模、电池单体的力学建模与仿真、多场耦合仿真方法等方面总结了仿真方法的研究现状。梳理了各类仿真方法的特点、适用性与局限性,并重点讨论建模方法、仿真精度和效率等关键问题。最后,对锂离子电池碰撞安全仿真方法存在的瓶颈问题和未来的发展趋势进行展望。可为锂离子电池的碰撞失效机理研究、建模仿真和安全设计提供系统的参考与指导。
  • 图  全球主要地区电动汽车保有量和增长趋势

    (数据统计于国际能源署门户网站:http://www.iea.org)

    图  锂离子电池碰撞导致的事故和电池不同程度的破坏。

    图  不同类型的锂离子电池及其内部结构和工作原理

    图  常见的软包锂离子电池机械滥用测试的加载工况及机械滥用测试时的力-电-热耦合行为

    图  电极拉伸和压缩的应力-应变曲线和测试试样

    图  锂离子电池隔膜微观结构及其力学行为

    图  电池壳材料及其结构的力学行为

    图  锂离子电池的精细化建模

    图  不用类型的锂离子电池均质化模型

    图  10  锂离子电池碰撞安全从力学失效-内短路-热失控过程示意图。

    图  11  针刺工况下柱状电池多场耦合行为的力学与电化学-热解耦仿真方法[52, 111]

    图  12  锂离子电池机械滥用的顺序耦合方法[22]

    图  13  基于二维模型的锂离子电池机械滥用直接耦合方法[146]

    图  14  基于直接耦合方法预测的锂离子电池多处短路渐进效应[146]

    表  1  锂离子电池的分类与特征对比

    形状/工艺 卷绕式 堆叠式 圆柱状
    组装方式
    电池壳 铝塑膜、金属 铝塑膜、金属 金属(钢或铝)
    电芯生产效率 + +- ++
    机械强度 + +- ++
    比能量 + ++ +
    热辐射 + + +-
    模块中能量密度 + ++ +
    下载: 导出CSV

    表  2  锂离子电池的常用组分材料及其力学特性[25]

    组分 材料 力学特性
    集流体 铝和铜 各向异性
    应变硬化
    韧性断裂
    率相关性
    活性材料 石墨,活性材料 压力相关性
    多孔特性
    隔膜 多孔聚合物(PP, PE, PP/PE/PP三层复合,陶瓷涂层PE) 正交各向异性
    弹-粘塑性
    温度相关性
    率相关性
    外壳 钢,铝塑膜 各向异性
    应变硬化
    率相关性
    韧性断裂
    下载: 导出CSV

    表  3  不同的耦合仿真方法的特征对比

    耦合方法 文献 建模方法 模型特点
    解耦方法 WIERBICKI等,2012[28],2013[30] ZHU等,2019[94];LI等,2020[119] 基于ABAQUS/LSDYNA的力学有限元分析,以宏观力学响应或隔膜失效为短路判据 解耦内短路失效过程以力学失效预测电短路
    SANTHANAGOPALAN等, 2009[134]; FANG等, 2014[135]; 基于COMSOL的电化学-热耦合分析,模型预置内短路 考虑不同的内短路模式,未考虑变形和力学损伤
    FENG等,2018[136];COMAN等,2017[130] 基于COMSOL的电化学-热耦合分析,以隔膜热失效导致的内短路为出发点 侧重热失控机理研究,未考虑变形
    ZHAO等, 2015[127, 133] 基于STAR-CD的电化学-热耦合模型,预置内短路或针刺 侧重内短路分析,未考虑变形和损伤过程
    LIU等,2016[52] 基于ABAQUS的三维力学失效分析,基于COMSOL的电化学-热耦合分析,采用隔膜失效准则通过一维短路模型集成耦合 多软件平台联合仿真,模型适用性强,具有较高的计算效率
    LI等,2020[138] 基于LS-DYNA的三维力学失效分析,基于COMSOL的电化学-热耦合分析,采用结构失效几何和短路模型集成耦合 考虑了电池结构的失效包络面并用于短路计算,模型可用于复杂工况,但短路面积有待进一步确认
    JIA等,2021[140] 基于Altair Hyperworks的热-电-力耦合分析,以RVE的功率密度-应变关系进行宏观力热耦合 通过RVE层面的力-电耦合提高了模型的计算效率,灵活性强
    顺序耦合法 ZHANG等,2015[22] 基于LS-DYNA的力-电-热耦合分析,采用隔膜应变失效准则实现力-电耦合 以隔膜失效为短路准则,揭示短路的物理机理,局限于电池单胞模型
    YUAN等,2019[145] 基于LS-DYNA的多物理场耦合模型,采用等效电路集流体间的位移为短路失效准则 模型经多工况试验校正,适用于工程设计与分析
    DENG等,2019[141],2018[142] 基于LS-DYNA的多物理场耦合模型,以集流体间的位移或单元应变为短路准则 厚壳单元代替实体单元和宏观模型,计算效率高,有工程应用价值
    直接耦合法 ZHANG等,2015[23] 基于LS-DYNA的多场耦合分析,采用代表性三明治模型,以隔膜应变为失效准则 采用代表性三明治模型简化建模,计算效率高,有工程应用价值
    ZHANG等,2016[24] 基于LS-DYNA的多场耦合分析,引入多尺度方法,以介观隔膜失效作为短路判据 通过多尺度方法实现实时耦合,力学模型简化多,计算效率低
    LIU等,2017[149] 基于COMSOL的多物理场模型耦合,采用等效应力的失效准则进行耦合 建模简单,模型仿真效率高,二维模型无法考虑复杂工况
    LI等,2020[146];2021[147] 基于COMSOL的力-电化学-热多场耦分析,隔膜应变为失效判据耦合 包含细致短路模型,仿真精度高,二维模型无法考虑面内的影响
    MALLARAPU等,2020[150] 基于LS-DYNA的多场耦合分析,根据多尺度思想,以电池单元的隔膜应变为短路准则 考虑了短路过程中力-电化学耦合效应,但局限于电池单元
    LEE等,2020[148] 基于LS-DYNA的多场耦合分析,以局部断裂失效为短路准则;子模型间双向耦合 考虑了非线性损伤导致的短路,建模复杂且计算量大
    下载: 导出CSV
  • [1] DENG J, BAE C, DENLINGER A, et al. Electric vehicles batteries: Requirements and challenges[J]. Joule, 2020, 4(3): 511-515. doi: 10.1016/j.joule.2020.01.013
    [2] International Energy Agency. Global EV outlook 2020[EB/OL]. [2021-11-03]. http://www.iea.org.
    [3] 朱晓庆, 王震坡, WANG H, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. doi: 10.3901/JME.2020.14.091

    ZHU Xiaoqing, WANG Zhenpo, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. doi: 10.3901/JME.2020.14.091
    [4] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem. Mat., 2010, 22(3): 587-603. doi: 10.1021/cm901452z
    [5] XIONG R, MA S, LI H, et al. Towards a safer battery management system: A critical review on diagnosis of battery short circuit[J]. iScience, 2020, 23(4): 101010. doi: 10.1016/j.isci.2020.101010
    [6] DENG J, BAE C, MARCICKI J, et al. Safety modeling and testing of lithium-ion batteries in electrified vehicles[J]. Nature Energy, 2018, 3: 261-266. doi: 10.1038/s41560-018-0122-3
    [7] LAI X, JIN C, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives[J]. Energy Storage Materials, 2021, 35(3): 470-499.
    [8] LIU B, JIA Y, YUAN C, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review[J]. Energy Storage Materials 2020, 24: 85-112. doi: 10.1016/j.ensm.2019.06.036
    [9] SUN P, HUANG X, BISSCHOP R, et al. A review of battery fires in electric vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410. doi: 10.1007/s10694-019-00944-3
    [10] 许骏, 王璐冰, 刘冰河. 锂离子电池机械完整性研究现状和展望[J]. 汽车安全与节能学报, 2017, 8(1): 15-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201701002.htm

    XU Jun, WANG Lubing, LIU Binghe. Review for mechanical integrity of lithium-ion battery[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 15-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201701002.htm
    [11] DOUGHTY D H, PESARAN A. Vehicle battery safety roadmap guidance[R]. NREL/SR-5400-54404, 2012.
    [12] TURNER J A, ALLU S, GORTI S, et al. Crash models for advanced automotive batteries[R]. ORNL/TM-2015/366, 2015.
    [13] 汽车之家. 与金属物碰撞造Tesla model S起火[EB/OL]. [2021-11-03]. http://www.autohome.com.cn/news/201310/630775.html

    Auto home. Collision with metal objects causes Tesla model Sfire[EB/OL]. [2021-11-03]. http://www.autohome.com.cn/news/201310/630775.html
    [14] WANG H, KUMAR A, SIMUNOVIC S, et al. Progressive mechanical indentation of large-format Li-ion cells[J]. Journal of Power Sources, 2017, 341: 156-164. doi: 10.1016/j.jpowsour.2016.11.094
    [15] LAMB J, ORENDORFF, C J, STEELE L A M, et al. Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources, 2015, 283: 517-523. doi: 10.1016/j.jpowsour.2014.10.081
    [16] KALNAUS S, WANG H, WATKINS T R, et al. Features of mechanical behavior of EV battery modules under high deformation rate[J]. Extreme Mechanics Letters, 2019, 32: 100550. doi: 10.1016/j.eml.2019.100550
    [17] WANG H, LARA-CURZIO E, RULE E T, et al. Mechanical abuse simulation and thermal runaway risks of large format li-ion batteries[J]. Journal of Power Sources, 2017, 342: 913-920. doi: 10.1016/j.jpowsour.2016.12.111
    [18] WANG H, SIMUNOVIC S, MALEK H, et al. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit[J]. Journal of Power Sources, 2016, 306: 424-430. doi: 10.1016/j.jpowsour.2015.12.026
    [19] ZHU X, WANG H, WANG X, et al. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: An experimental study[J]. Journal of Power Sources, 2020, 455: 227939. doi: 10.1016/j.jpowsour.2020.227939
    [20] LAMB J, ORENDORFF C J. Evaluation of mechanical abuse techniques in lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 189-196. doi: 10.1016/j.jpowsour.2013.08.066
    [21] ORENDORFF C J, LAMB J, STEELE L A M, et al. Propagation testing multi-cell batteries[R]. SAND2014-17053, 2014.
    [22] ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse[J]. Journal of Power Sources, 2015, 290: 102-113. doi: 10.1016/j.jpowsour.2015.04.162
    [23] ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. A representative-sandwich model for simultaneously coupled mechanical-electrical- thermal simulation of a lithium-ion cell under quasi-static indentation tests[J]. Journal of Power Sources, 2015, 298: 309-321. doi: 10.1016/j.jpowsour.2015.08.049
    [24] ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Simultaneously coupled mechanical- electrochemical-thermal simulation of lithium-ion cells[J]. ECS Transactions, 2016, 72(24): 9-19. doi: 10.1149/07224.0009ecst
    [25] ZHU J, WIERZBICKI T, LI W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 153-168. doi: 10.1016/j.jpowsour.2017.12.034
    [26] SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 li-ion cells under mechanical abuse conditions[J]. Journal of Power Sources, 2012, 220: 360-372. doi: 10.1016/j.jpowsour.2012.07.057
    [27] SAHRAEI E, BOSCO E, DIXON B, et al. Microscale failure mechanisms leading to internal short circuit in li-ion batteries under complex loading scenarios[J]. Journal of Power Sources, 2016, 319: 56-65. doi: 10.1016/j.jpowsour.2016.04.005
    [28] SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity[J]. Journal of Power Sources, 2012, 201: 307-321. doi: 10.1016/j.jpowsour.2011.10.094
    [29] SAHRAEI E, MEIER J, WIERZBICKI T. Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells[J]. Journal of Power Sources, 2014, 247: 503-519. doi: 10.1016/j.jpowsour.2013.08.056
    [30] WIERZBICKI T, SAHRAEI E. Homogenized mechanical properties for the jellyroll of cylindrical lithium-ion cells[J]. Journal of Power Sources, 2013, 241: 467-476. doi: 10.1016/j.jpowsour.2013.04.135
    [31] 李威. 基于精细模型的锂离子电池变形失效研究[D]. 北京: 清华大学, 2019.

    LI Wei. Safety of lithium-ion battery deformation and failure based on detailed modeling[D]. Beijing: Tsinghua University, 2019.
    [32] 罗海灵. 机械滥用下锂离子软包电池结构失效机理与建模研究[D]. 北京: 清华大学, 2018.

    LUO Hailing. Structural failure mechanism and modelling of lithium-ion battery pouch cell under mechanical abuse[D]. Beijing: Tsinghua University, 2018.
    [33] LUO H, XIA Y, ZHOU Q. Mechanical damage in a lithium-ion pouch cell under indentation loads[J]. Journal of Power Sources, 2017, 357: 61-70. doi: 10.1016/j.jpowsour.2017.04.101
    [34] LIU Y, XIA Y, ZHOU Q. Effect of low-temperature aging on the safety performance of lithium-ion pouch cells under mechanical abuse condition: A comprehensive experimental investigation[J]. Energy Storage Materials, 2021, 40: 268-281. doi: 10.1016/j.ensm.2021.05.022
    [35] XU J, LIU B, HU D. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries[J]. Scientific Reports, 2016, 6(1): 21829. doi: 10.1038/srep21829
    [36] JIA Y, YIN S, LIU B, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading[J]. Energy, 2019, 166: 951-960. doi: 10.1016/j.energy.2018.10.142
    [37] XU J, LIU B, WANG L, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing[J]. Engineering Failure Analysis, 2015, 53: 97-110. doi: 10.1016/j.engfailanal.2015.03.025
    [38] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.

    FENG Xuning. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
    [39] FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4: 1-28. doi: 10.1016/j.joule.2019.10.011
    [40] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. doi: 10.1016/j.ensm.2017.05.013
    [41] REN D, FENG X, LIU L, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. doi: 10.1016/j.ensm.2020.10.020
    [42] FENG X, ZHENG S, REN D, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. doi: 10.1016/j.apenergy.2019.04.009
    [43] ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192. doi: 10.1016/j.jpowsour.2015.11.100
    [44] ZHAO Y, STEIN P, BAI Y et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries[J]. Journal of Power Sources, 2019, 413: 259-283. doi: 10.1016/j.jpowsour.2018.12.011
    [45] HORIBA T. Lithium-ion battery systems[J]. Proceedings of the IEEE, 2014, 102(6): 939-950. doi: 10.1109/JPROC.2014.2319832
    [46] ZHU J, ZHANG X, SAHRAEI E, et al. Deformation and failure mechanisms of 18650 battery cells under axial compression[J]. Journal of Power Sources, 2016, 336: 332-340. doi: 10.1016/j.jpowsour.2016.10.064
    [47] CHEN Y, KANG Y, ZHAO Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99. doi: 10.1016/j.jechem.2020.10.017
    [48] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choice[J]. Science, 2011, 334(6058): 928-935. doi: 10.1126/science.1212741
    [49] GOODMAN J K S, MILLER J T, KREUZER S, et al. Lithium-ion cell response to mechanical abuse: Three-point bend[J]. Journal of Energy Storage, 2020, 28: 101244. doi: 10.1016/j.est.2020.101244
    [50] YAMANAKA T, TAKAGISHI Y, TOZUKA Y, et al. Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk[J]. Journal of Power Sources, 2019, 416: 132-140. doi: 10.1016/j.jpowsour.2019.01.055
    [51] YOKOSHIMA T, MUKOYAMA D, MAEDA F, et al. Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test[J]. Journal of Power Sources, 2018, 393: 67-74. doi: 10.1016/j.jpowsour.2018.04.092
    [52] LIU B, YIN S, XU J. Integrated computation model of lithium-ion battery subject to nail penetration[J]. Applied Energy, 2016, 183: 278-289. doi: 10.1016/j.apenergy.2016.08.101
    [53] CHEN X, WANG T, ZHANG Y, et al. Dynamic mechanical behavior of prismatic lithium-ion battery upon impact[J]. International Journal of Energy Research, 2019, 43(13): 7421-7432.
    [54] XI S, ZHAO Q, CHANG L, et al. The dynamic failure mechanism of a lithium-ion battery at different impact velocity[J]. Engineering Failure Analysis, 2020, 116: 104747. doi: 10.1016/j.engfailanal.2020.104747
    [55] CHEN Y, SANTHANAGOPALAN S, BABU V, et al. Dynamic mechanical behavior of lithium-ion pouch cells subjected to high-velocity impact[J]. Composite Structures, 2019, 218: 50-59. doi: 10.1016/j.compstruct.2019.03.046
    [56] ZHANG G, WEI X, TANG X, et al. Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110790. doi: 10.1016/j.rser.2021.110790
    [57] 张明轩. 汽车动力电池系统内短路问题研究[D]. 北京: 清华大学, 2018.

    ZHANG Mingxuan. Research on the internal short circuit problem of the vehicle power battery system[D]. Beijing: Tsinghua University, 2018.
    [58] YANG L, LI N, HU L, et al. Internal field study of 21700 battery based on long-life embedded wireless temperature sensor [J]. Acta Mechanica Sinica, 2021, 37(6): 898-904.
    [59] HUANG S, DU X, RICHTER M, et al. Understanding li-ion cell internal short circuit and thermal runaway through small, slow and in situ nail penetration[J]. Journal of the Electrochemical Society, 2020, 167(9): 090526. doi: 10.1149/1945-7111/ab8878
    [60] HATCHARD T D, TRUSSLER S, DAHN J R. Building a "smart nail" for penetration tests on li-ion cells[J]. Journal of Power Sources, 2014, 247: 821-823. doi: 10.1016/j.jpowsour.2013.09.022
    [61] ZHU S, HAN J, PAN T, et al. A novel designed visualized Li-ion battery for in-situ measuring the variation of internal temperature[J]. Extreme Mechanics Letters, 2020, 37: 100707. doi: 10.1016/j.eml.2020.100707
    [62] LIU B, DUAN X, YUAN C, et al. Quantifying and modeling of stress-driven short-circuits in lithium-ion batteries in electrified vehicles[J]. Journal of Materials Chemistry A, 2021, 9(11): 7102-7113. doi: 10.1039/D0TA12082K
    [63] ZHANG C, XU J, CAO L, et al. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 126-137. doi: 10.1016/j.jpowsour.2017.04.103
    [64] WANG L, YIN S, ZHANG C, et al. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2018, 392: 265-273. doi: 10.1016/j.jpowsour.2018.05.007
    [65] FADILLAH H, SANTOSA S P, GUNAWAN L, et al. Dynamic high strain rate characterization of lithium-ion Nickel-Cobalt-Aluminum (NCA) battery using split hopkinson tensile/pressure bar methodology[J]. Energies, 2020, 13(19): 5061. doi: 10.3390/en13195061
    [66] WANG L, YIN S, YU Z, et al. Unlocking the significant role of shell material for lithium-ion battery safety[J]. Materials & Design, 2018, 160: 601-610.
    [67] HALALAY I C, LUKITSCH M J, BALOGH M P, et al. Nanoindentation testing of separators for lithium-ion batteries[J]. Journal of Power Sources, 2013, 238: 469-477. doi: 10.1016/j.jpowsour.2013.04.036
    [68] ZHU J, ZHANG X, LUO H, et al. Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests[J]. Applied Energy, 2018, 224: 251-266. doi: 10.1016/j.apenergy.2018.05.007
    [69] LUO H, ZHU J, SAHRAEI E, et al. Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings[J]. RSC Advances, 2018, 8(8): 3996. doi: 10.1039/C7RA12382E
    [70] CANNARELLA J, LIU X Y, LENG C Z, et al. Mechanical properties of a battery separator under compression and tension [J]. Journal of the Electrochemical Society, 2014, 161(11): 3117-3122. doi: 10.1149/2.0191411jes
    [71] ZHANG X, SAHRAEI E, WANG K. Deformation and failure characteristics of four types of lithium-ion battery separators[J]. Journal of Power Sources, 2016, 327: 693-701. doi: 10.1016/j.jpowsour.2016.07.078
    [72] PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19): 8147-8153. doi: 10.1016/j.jpowsour.2011.05.023
    [73] XU J, WANG L, GUAN J, et al. Coupled effect of strain rate and solvent on dynamic mechanical behavior of separator in lithium ion batteries[J]. Materials & Design, 2016, 95: 319-328.
    [74] SHEIDAEI A, XIAO X R, HUANG X S, et al. Mechanical behavior of a battery separator in electrolyte solutions[J]. Journal of Power Sources, 2011, 196(20): 8728-8734. doi: 10.1016/j.jpowsour.2011.06.026
    [75] AVDEEV I, MARTINSEN M, A FRANCIS. Rate- and temperature dependent material behavior of a multilayer polymer battery separator[J]. Journal of Materials Engineering and Performance, 2014, 23(1): 315-325. doi: 10.1007/s11665-013-0743-4
    [76] JI Y, CHEN X, WANG T, et al. Coupled effects of charge-discharge cycles and rates on the mechanical behavior of electrodes of lithium-ion batteries[J]. Journal of Energy Storage, 2020, 30: 101577. doi: 10.1016/j.est.2020.101577
    [77] ZHU J, LI W, XIA Y, et al. Testing and modeling the mechanical properties of the granular materials of graphite anode[J]. Journal of the Electrochemical Society, 2018, 165(5): 1160-1168. doi: 10.1149/2.0141807jes
    [78] DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. doi: 10.1090/qam/48291
    [79] HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceeding of the Royal Society A Mathematical, Physical and Engineering Sciences, 1948, 193(1033): 281-297.
    [80] LAGADEC M F, ZAHN R, WOOD V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy, 2019, 4(1): 16-25.
    [81] PAN Z, ZHU J, XU H, et al. Microstructural deformation patterns of a highly orthotropic polypropylene separator of lithium-ion batteries: Mechanism, model, and theory[J]. Extreme Mechanics Letters, 2020, 37: 100705. doi: 10.1016/j.eml.2020.100705
    [82] ZHANG Xiaowei. Mechanical behavior of shell casing and separator of lithium-ion battery[D]. Cambridge: Massachusetts Institute of Technology, 2017.
    [83] KALNAUS S, WANG Y, LI J, et al. Temperature and strain rate dependent behavior of polymer separator for li-ion batteries[J]. Extreme Mechanics Letters, 2018, 20: 73-80. doi: 10.1016/j.eml.2018.01.006
    [84] DOMMELEN J A W, PARKS D M, BOYCE M C, et al. Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(3): 519-541. doi: 10.1016/S0022-5096(02)00063-7
    [85] LEE S, RUTLEDGE G C. Plastic deformation of semicrystalline polyethylene by molecular simulation[J]. Macromolecules, 2011, 44(8): 3096-3108. doi: 10.1021/ma1026115
    [86] XIAO X, WU W, HUANG X. A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery[J]. Journal of Power Sources, 2010, 195(22): 7649-7660. doi: 10.1016/j.jpowsour.2010.06.020
    [87] SEDIGHIAMIRI A, SENDEN D J A, TRANCHIDA D, et al. A micromechanical study on the deformation kinetics of oriented semicrystalline polymers[J]. Computational Materials Science, 2014, 82: 415-426. doi: 10.1016/j.commatsci.2013.09.068
    [88] YAN S, XIAO X, HUANG X, et al. Unveiling the environment-dependent mechanical properties of porous polypropylene separators[J]. Polymer, 2014, 55(24): 6282-6292. doi: 10.1016/j.polymer.2014.09.067
    [89] XU H, BAE C. Stochastic 3D microstructure reconstruction and mechanical modeling of anisotropic battery separators[J]. Journal of Power Sources, 2019, 430: 67-73. doi: 10.1016/j.jpowsour.2019.05.021
    [90] XU H, ZHU M, MARCICKI J, et al. Mechanical modeling of battery separator based on microstructure image analysis and stochastic characterization[J]. Journal of Power Sources, 2017, 345: 137-145. doi: 10.1016/j.jpowsour.2017.02.002
    [91] XU H, USSEGLIO-VIRETTA F, KENCH S, et al. Microstructure reconstruction of battery polymer separators by fusing 2D and 3D image data for transport property analysis[J]. Journal of Power Sources, 2020, 480: 229101. doi: 10.1016/j.jpowsour.2020.229101
    [92] ZHANG X, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery[J]. Journal of Power Sources, 2015, 280: 47-56. doi: 10.1016/j.jpowsour.2015.01.077
    [93] GREVE L, FEHRENBACH C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells[J]. Journal of Power Sources, 2012, 214: 377-385. doi: 10.1016/j.jpowsour.2012.04.055
    [94] ZHU J, LI W, WIERZBICKI T, et al. Deformation and failure of lithium-ion batteries treated as a discrete layered structure[J]. International Journal of Plasticity, 2019, 121: 293-311. doi: 10.1016/j.ijplas.2019.06.011
    [95] PAN Z, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading[J]. Journal of Energy Storage, 2020, 27: 101016. doi: 10.1016/j.est.2019.101016
    [96] WANG L, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: from cell deformation to short-circuit onset[J]. Journal of Power Sources, 2019, 413: 284-292. doi: 10.1016/j.jpowsour.2018.12.059
    [97] LIU B, JIA Y, LI J, et al. Safety issues caused by internal short circuits in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(43): 21475-21484. doi: 10.1039/C8TA08997C
    [98] YUAN C, WANG L, YIN S, et al. Generalized separator failure criteria for internal short circuit of lithium-ion battery[J]. Journal of Power Sources, 2020, 467: 228360. doi: 10.1016/j.jpowsour.2020.228360
    [99] KISTERS T, SAHRAEI E, WIERZBICKI T. Dynamic impact tests on lithium-ion cells[J]. International Journal of Impact Engineering, 2017, 108: 205-216. doi: 10.1016/j.ijimpeng.2017.04.025
    [100] ZHU J, LUO H, LI W, et al. Mechanism of strengthening of battery resistance under dynamic loading[J]. International Journal of Impact Engineering, 2018, 131: 78-84.
    [101] LAI W, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions[J]. Journal of Power Sources, 2014, 248: 789-808. doi: 10.1016/j.jpowsour.2013.09.128
    [102] LAI W, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions[J]. Journal of Power Sources, 2014, 245: 609-623. doi: 10.1016/j.jpowsour.2013.06.134
    [103] ALI M Y, LAI W, PAN J. Computational models for simulations of lithium-ion battery cells under constrained compression tests[J]. Journal of Power Sources, 2013, 242: 325-340. doi: 10.1016/j.jpowsour.2013.05.022
    [104] MEI W, DUAN Q, ZHAO C, et al. Three-dimensional layered electrochemical -thermal model for a lithium-ion pouch cell Part II. The effect of units number on the performance under adiabatic condition during the discharge[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119082. doi: 10.1016/j.ijheatmasstransfer.2019.119082
    [105] SAHRAEI E, KAHN M, MEIERC J, et al. Modelling of cracks developed in lithium-ion cells under mechanical loading[J]. RSC Advances, 2015, 5(98): 80369-80380. doi: 10.1039/C5RA17865G
    [106] WANG W, YANG S, LIN C. Clay-like mechanical properties for the jellyroll of cylindrical lithium-ion cells[J]. Applied Energy, 2017, 196: 249-258. doi: 10.1016/j.apenergy.2017.01.062
    [107] WANG W, LI Y, CHENG L, et al. Safety performance and failure prediction model of cylindrical lithium-ion battery[J]. Journal of Power Sources, 2020, 451: 227755. doi: 10.1016/j.jpowsour.2020.227755
    [108] WANG W, LI Y, CHENG L, et al. State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse[J]. Applied Energy, 2019, 251: 113365. doi: 10.1016/j.apenergy.2019.113365
    [109] LIAN J, WIERZBICKI T, ZHU J, et al. Prediction of shear crack formation of lithium-ion batteries under rod indentation: Comparison of seven failure criteria[J]. Engineering Fracture Mechanics, 2019, 217: 106520. doi: 10.1016/j.engfracmech.2019.106520
    [110] XU J, LIU B, WANG X, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies[J]. Applied Energy, 2016, 172: 172-189.
    [111] 刘冰河. 锂离子电池机械完整性的多场耦合机理研究[D]. 北京: 北京航空航天大学, 2018.

    LIU Binghe. The study of multi-physics mechanism of mechanical integrity for lithium-ion battery[D]. Beijing: Beihang University, 2018.
    [112] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact[J]. Journal of Power Sources, 2014, 267: 78-97. doi: 10.1016/j.jpowsour.2014.05.078
    [113] ZHANG H, ZHOU M, HU L, et al. Mechanism of the dynamic behaviors and failure analysis of lithium-ion batteries under crushing based on stress wave theory[J]. Engineering Failure Analysis, 2020, 108: 104290. doi: 10.1016/j.engfailanal.2019.104290
    [114] HU L L, ZHANG Z W, ZHOU M Z, et al. Crushing behaviors and failure of packed batteries[J]. International Journal of Impact Engineering, 2018, 143: 103618.
    [115] ZHOU M, HU L, CHEN S, et al. Different mechanical-electrochemical coupled failure mechanism and safety evaluation of lithium-ion pouch cells under dynamic and quasi-static mechanical abuse[J]. Journal of Power Sources, 2021, 267: 229897.
    [116] LIU B, ZHANG J, ZHANG C, et al. Mechanical integrity of 18650 lithium-ion battery module: packing density and packing mode[J]. Engineering Failure Analysis, 2018, 91: 315-326. doi: 10.1016/j.engfailanal.2018.04.041
    [117] KUMAR A, KALNAUS S, SIMUNOVIC S, et al. Communication-Indentation of li-ion pouch cell: effect of material homogenization on prediction of internal short circuit[J]. Journal of the Electrochemical Society, 2016, 163(10): 2494-2496. doi: 10.1149/2.0151613jes
    [118] YIN H, MA S, LI H, et al. Modeling strategy for progressive failure prediction in lithium-ion batteries under mechanical abuse[J]. eTransportation, 2021, 7: 100098. doi: 10.1016/j.etran.2020.100098
    [119] LI W, ZHU J. A large deformation and fracture model of lithium-ion battery cells treated as a homogenized medium[J]. Journal of the Electrochemical Society, 2020, 167(12): 120504. doi: 10.1149/1945-7111/aba936
    [120] 李志杰, 陈吉清, 兰凤崇, 等. 方形锂离子电池内芯层级式模型方法及细观变形失效分析[J]. 机械工程学报, 2021, 57(18): 229-239. doi: 10.3901/JME.2021.18.229

    LI Zhijie, CHEN Jiqing, LAN Fengchong, et al. Internal layer-stacking model method of prismatic lithium-ion batteries and mesoscale failure analysis[J]. Journal of Mechanical Engineering, 2021, 57(18): 229-239. doi: 10.3901/JME.2021.18.229
    [121] HAO W, XIE J, WANG F. The indentation analysis triggering internal short circuit of lithium‐ion pouch battery based on shape function theory[J]. International Journal of Energy Research, 2018, 42(11): 3696-3703. doi: 10.1002/er.4109
    [122] HAO W, XIE J, BO X, et al. Resistance exterior force property of lithium‐ion pouch batteries with different positive materials[J]. International Journal of Energy Research, 2019, 43(9): 4976-4986. doi: 10.1002/er.4588
    [123] FINEGAN D P, DARCY E, KEYSER M, et al. Identifying the cause of rupture of Li-ion batteries during thermal runaway[J]. Advanced Science, 2018, 5(1): 1700369. doi: 10.1002/advs.201700369
    [124] FINEGAN D P, DARST J, WALKER W, et al. Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells[J]. Journal of Power Sources, 2019, 417: 29-41. doi: 10.1016/j.jpowsour.2019.01.077
    [125] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. doi: 10.1016/j.jpowsour.2012.02.038
    [126] WANG Q, MAO B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. doi: 10.1016/j.pecs.2019.03.002
    [127] ZHAO W, LUO G, WANG C. Modeling internal shorting process in large-format li-ion cells[J]. Journal of the Electrochemical Society, 2015, 162(7): 1352-1364. doi: 10.1149/2.1031507jes
    [128] CHIU K, LIN C, YEH S, et al. An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of Power Sources, 2014, 251: 254-263. doi: 10.1016/j.jpowsour.2013.11.069
    [129] KIM J, MALLARAPU A, SANTHANAGOPALAN S. Transport processes in a li-ion cell during an internal short-circuit[J]. Journal of the Electrochemical Society, 2020, 167(9): 090554. doi: 10.1149/1945-7111/ab995d
    [130] COMAN P T, DARCY E C, VEJE C T, et al. Modelling li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and arrhenius formulations[J]. Journal of the Electrochemical Society, 2017, 164(4): 587-593. doi: 10.1149/2.0341704jes
    [131] ZAVALIS T G, BEHM M, LINDBERGH G. Investigation of short-circuit scenarios in a lithium-ion battery cell[J]. Journal of the Electrochemical Society, 2012, 159(6): 848-859. doi: 10.1149/2.096206jes
    [132] ZHAO R, LIU J, GU J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions[J]. Energy, 2017, 123: 392-401. doi: 10.1016/j.energy.2017.02.017
    [133] ZHAO W, LUO G, WANG C. Modeling nail penetration process in large-format li-ion cells[J]. Journal of the Electrochemical Society, 2015, 162(1): 207-217. doi: 10.1149/2.1071501jes
    [134] SANTHANAGOPALAN S, RAMADASS P, ZHANG Z. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557. doi: 10.1016/j.jpowsour.2009.05.002
    [135] FANG W, RAMADASS P, ZHANG Z. Study of internal short in a li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model[J]. Journal of Power Sources, 2014, 248: 1090-1098. doi: 10.1016/j.jpowsour.2013.10.004
    [136] FENG X, HE X, OUYANG M, et al. A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): 3748-3765. doi: 10.1149/2.0311816jes
    [137] FENG X, HE X, LU L, et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of the Electrochemical Society, 2018, 165(2): 1550-167.
    [138] LI Y, WANG W, LIN C, et al. Multi-physics safety model based on structure damage for lithium-ion battery under mechanical abuse[J]. Journal of Cleaner Production, 2020, 277: 124094. doi: 10.1016/j.jclepro.2020.124094
    [139] LI Y, WANG W, LIN C, et al. High-efficiency multiphysics coupling framework for cylindrical lithium-ion battery under mechanical abuse[J]. Journal of Cleaner Production, 2021, 286: 125451. doi: 10.1016/j.jclepro.2020.125451
    [140] JIA Y, GAO X, MOUILLET J-B, et al. Effective thermo-electro-mechanical modeling framework of lithium-ion batteries based on a representative volume element approach[J]. Journal of Energy Storage, 2021, 33: 102090. doi: 10.1016/j.est.2020.102090
    [141] DENG J, BAE C, MILLER T, et al. Communication—Multi-physics battery safety simulations across length scales[J]. Journal of the Electrochemical Society, 2019, 166(14): 3119-3121. doi: 10.1149/2.0261914jes
    [142] DENG J, BAE C, MILLER T, et al. Accelerate battery safety simulations using composite tshell elements[J]. Journal of the Electrochemical Society, 2018, 165(13): 3067-3076. doi: 10.1149/2.0521813jes
    [143] DENG J, SMITH I, BAE C, et al. Impact modeling and testing of pouch and prismatic cells[J]. Journal of the Electrochemical Society, 2020, 167(9): 090550. doi: 10.1149/1945-7111/ab9962
    [144] MARCICKI J, ZHU M, BARLETT A, et al. A simulation framework for battery cell impact safety modeling using LS-DYNA[J]. Journal of the Electrochemical Society, 2017, 164(1): 6440-6448. doi: 10.1149/2.0661701jes
    [145] YUAN C, GAO X, WONG H K, et al. A Multiphysics computational framework for cylindrical battery behavior upon mechanical loading based on LS DYNA[J]. Journal of the Electrochemical Society, 2019, 166(6): 1160-1169. doi: 10.1149/2.1071906jes
    [146] LI H, LIU B, ZHOU D, et al. Coupled mechanical- electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. doi: 10.1149/1945-7111/aba96f
    [147] LI H, ZHOU D, DU C, et al. Parametric study on the safety behavior of mechanically induced short circuit for lithium-ion pouch batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 020904. doi: 10.1115/1.4048705
    [148] LEE D-C, KIM C-W. Two-way nonlinear mechanical- electrochemical-thermal coupled analysis method to predict thermal runaway of lithium-ion battery cells caused by quasi-static indentation[J]. Journal of Power Sources, 2020, 475: 228678. doi: 10.1016/j.jpowsour.2020.228678
    [149] LIU B, ZHAO H, YU H, et al. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading[J]. Electrochimica Acta, 2017, 256: 172-184. doi: 10.1016/j.electacta.2017.10.045
    [150] MALLARAPU A, KIM J, CARNEY K, et al. Modeling extreme deformations in lithium ion batteries[J]. eTransportation, 2020, 4: 100065. doi: 10.1016/j.etran.2020.100065
    [151] LI W, ZHU J, XIA Y, et al. Data-driven safety envelope of lithium-ion batteries for electric vehicles[J]. Joule, 2019, 3(11): 2703-2715. doi: 10.1016/j.joule.2019.07.026
    [152] LI Y, WANG W, LIN C, et al. Safety modeling and protection for lithium-ion batteries based on artificial networks method under mechanical abuse[J]. Science China Technological Sciences, 2021, 64(11): 2373-2388. doi: 10.1007/s11431-021-1826-2
    [153] JIA Y, LI J, YUAN C, et al. Data-driven safety risk prediction of lithium-ion battery[J]. Advanced Energy Materials, 2021, 11(18): 2003868. doi: 10.1002/aenm.202003868
    [154] FINEGAN D P, TJADEN B, HEENAN T M M, et al. Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(13): 3285-3291. doi: 10.1149/2.1501713jes
    [155] JIA Y, LIU B, HONG Z, et al. Safety issues of defective lithium-ion batteries: identification and risk evaluation[J]. Journal of Materials Chemistry A, 2020, 8(25): 12472-12484. doi: 10.1039/D0TA04171H
    [156] XIONG R, SUN W, YU Q, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electrical vehicles[J]. Applied Energy, 2020, 279: 115855. doi: 10.1016/j.apenergy.2020.115855
    [157] 胡晓松, 陈科坪, 唐小林, 等. 基于机器学习速度预测的并联混合动力车辆能量管理研究[J]. 机械工程学报, 2020, 56(16): 181-192. doi: 10.3901/JME.2020.16.181

    HU Xiaosong, CHEN Keping, TANG Xiaolin, et al. Machine learning velocity prediction- based energy management of parallel hybrid electric vehicle[J]. Journal of Mechanical Engineering, 2020, 56(16): 181-192. doi: 10.3901/JME.2020.16.181
    [158] 张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27. doi: 10.3901/JME.2019.20.017

    ZHANG Yajun, WANG Hewu, FENG Xuning, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries[J]. Journal of Mechanical Engineering, 2019, 55(20): 17-27. doi: 10.3901/JME.2019.20.017
    [159] LI H, ZHOU D, ZHANG M, et al. Multi-field interpretation of internal short circuit and thermal numaway behavior for lithium-ion batteries under mechanical abuse[J]. Energy, 2023, 263: 126027. doi: 10.1016/j.energy.2022.126027
    [160] ZHOU D, LI H, LI Z, et al. Toward the performance evolution of lithium-ion battery upor impact loading[J]. Electrocimica Acta, 2022, 432: 41192.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  36
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-31
  • 修回日期:  2022-07-20
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回