留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池系统均衡策略研究进展

钱广俊 韩雪冰 卢兰光 孙跃东 郑岳久

钱广俊, 韩雪冰, 卢兰光, 孙跃东, 郑岳久. 锂离子电池系统均衡策略研究进展[J]. 机械工程学报, 2022, 58(24): 145-162. doi: 10.3901/JME.2022.24.145
引用本文: 钱广俊, 韩雪冰, 卢兰光, 孙跃东, 郑岳久. 锂离子电池系统均衡策略研究进展[J]. 机械工程学报, 2022, 58(24): 145-162. doi: 10.3901/JME.2022.24.145
QIAN Guangjun, HAN Xuebing, LU Languang, SUN Yuedong, ZHENG Yuejiu. Advances in Lithium-ion Battery System Equalization Strategy Research[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 145-162. doi: 10.3901/JME.2022.24.145
Citation: QIAN Guangjun, HAN Xuebing, LU Languang, SUN Yuedong, ZHENG Yuejiu. Advances in Lithium-ion Battery System Equalization Strategy Research[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 145-162. doi: 10.3901/JME.2022.24.145

锂离子电池系统均衡策略研究进展

doi: 10.3901/JME.2022.24.145
基金项目: 

国家自然科学基金资助项目 51877138

详细信息
    作者简介:

    钱广俊,男,1992年出生。主要研究方向为锂离子电池组均衡算法和电化学阻抗谱。E-mail:qguangjun@163.com

    通讯作者:

    郑岳久(通信作者),男,1986年出生,博士,副教授,博士研究生导师。主要研究方向为智能电池管理、电池老化与故障诊断。E-mail:yuejiu_zheng@163.com

  • 中图分类号: TM912

Advances in Lithium-ion Battery System Equalization Strategy Research

  • 摘要: 相比电池单体,成组后电池系统的容量、寿命和安全性均会大幅度下降,其原因在于内部参数和外部环境导致的不一致性问题。因此,需要均衡管理系统保障电池的一致性,其中均衡策略是关键之一。从均衡动机、均衡目标、均衡算法和均衡策略评价四方面,对国内外电池均衡策略研究进展进行了综述。首先深入分析电池组一致性影响因素,确定均衡动机。其次,从均衡目标出发,总结了电池组、电路和多目标融合三方面研究进展。再次,根据不同的算法分类详细阐述均衡算法。之后,对均衡策略的评价进行总结并提出一种新的评价方法。最后,系统梳理了目前亟待解决的均衡技术关键问题,对未来均衡策略的研究进行了展望。

     

    相比电池单体,成组后电池系统的容量、寿命和安全性均会大幅度下降,其原因在于内部参数和外部环境导致的不一致性问题。因此,需要均衡管理系统保障电池的一致性,其中均衡策略是关键之一。从均衡动机、均衡目标、均衡算法和均衡策略评价四方面,对国内外电池均衡策略研究进展进行了综述。首先深入分析电池组一致性影响因素,确定均衡动机。其次,从均衡目标出发,总结了电池组、电路和多目标融合三方面研究进展。再次,根据不同的算法分类详细阐述均衡算法。之后,对均衡策略的评价进行总结并提出一种新的评价方法。最后,系统梳理了目前亟待解决的均衡技术关键问题,对未来均衡策略的研究进行了展望。
  • 图  均衡技术分类总结

    图  单体参数的影响关系[47]

    图  基于电压一致的均衡目标原理示意图

    图  基于SOC一致的均衡目标原理示意图[46]

    图  电池组容量-电量散点图

    图  基于容量一致的均衡目标原理示意图[46]

    表  1  均衡目标的原理、优点和缺点

    均衡目标 原理 优点 缺点
    基于电压一致 1.简单,测量方便
    2.数据来源可靠
    3.充放电边界清晰
    4.扩展性强
    1.易受电池内部参数影响
    2.温度和老化对其有影响
    3.LFP电池电压有平台
    4.有些均衡电路构型复杂,成本高
    5.低容量利用率
    基于SOC一致
    OCV-SOC估计
    1.占用计算资源少
    2. 准确反应电池内部状态
    3.更加稳定
    安时法SOC估计
    1.需要精确初始SOC
    卡尔曼滤波SOC估计
    1.计算量大
    整体
    1.电池组容量增大
    2.鲁棒性强
    OCV-SOC
    1.一致性影响曲线形状
    2.滞后特性
    3.静置的单体
    4.老化影响
    5.LFP电池电压平台
    安时法SOC估计
    1.累积误差大
    卡尔曼滤波SOC估计
    1.高和低SOC区间误差大
    整体
    1.计算量大且复杂
    2.老化影响
    3.主动均衡电路构型复杂
    基于容量一致 1.约束条件宽泛
    2.电池组容量最大化利用
    3.延长电池组使用寿命,减缓老化
    1.需要稳定、精确的计算资源
    2.主动均衡的均衡电流需要额外计算
    均衡时间最小化 减少均衡过程的持续时间 1.时间易于测量
    2.对被动均衡而言,缩短均衡时间意味着有更高的效率
    1.受多个因素影响
    2.对主动均衡而言,缩短均衡时间意味着有更高的能耗
    均衡能耗最小化 降低元件传输过程能量损耗 1.提高能量利用率 1.有些均衡能耗数据很难获得
    2.跟电池组容量大小有关
    多目标融合 多个均衡目标同时控制 1.弥补单个均衡目标的缺点
    2.改善均衡速度和均衡效果
    1.计算量大且复杂
    2. 电路更加复杂、成本高
    下载: 导出CSV

    表  2  均衡算法的原理和优缺点

    均衡算法 原理 优点 缺点
    经典控制算法 经典代数值
    使用经典算术运算的结果,例如极值、均值等作为均衡标准 1.计算灵活 1.均衡时间受影响
    2.适用性强 2.均衡效率受影响
    PID
    比例系数、积分系数和微分系数 1.结构简单 1.需要选取合适的参数
    2.稳定可靠 2.突变之后无法快速稳定
    3.调节方便
    现代控制算法 OC
    在给定条件下寻找受控系统的控制规律,根据目标函数寻找指定的性能指标的最优解 1.适用于复杂系统 1.近似求解
    2.指定性能最优解 2.复杂系统建模困难
    MPC
    根据测量信息在每个采样时间在线解决有限时域中的开环优化问题 1.控制多参数 1.运行条件要已知
    2.简单高效 2.有时建模复杂
    3.可拓展性强
    智能控制算法 AC
    一种用来寻找优化路径的概率型算法 1.应用广泛 1.经验选择参数
    2.正反馈逼近最优解
    GA
    属于进化算法的一种, 它通过模仿自然界的选择与遗传的机理来寻找最优解 1.复杂优化问题求解 1.收敛速度慢
    2.高度可拓展性 2.局部搜索能力差
    3.鲁棒性强 3.控制变量多
    PSO
    基于迭代的优化算法 1.简单、调整的参数少 1.局部寻优能力较差
    FLC
    一种使用隶属度代替布尔真值的逻辑 1.鲁棒性强 1.规则定制依赖经验
    2.实时性好 2.灵活性差
    3.容错性好 3.可移植性差
    混合控制算法 分布式控制
    基于多智能体共识算法的均衡系统多目标分布式控制 1.扩展性和灵活性好 1.稳定性有待验证
    2.易于实现和调整 2.算法结构复杂
    3.不需要系统模型 3.集成困难
    下载: 导出CSV

    表  3  定性和定量结合的均衡策略评价方法

    评价方法 评价指标 说明 评价等级(单位)
    定性评价 均衡路径 能量转移路径的简洁性评价 复杂、适中、简单
    复杂性 均衡算法复杂性评价 复杂、适中、简单
    实用性 均衡算法实际应用性评价 好、中、差
    拓展性 均衡算法的内存占用评价 大、中、小
    均衡能耗 均衡能耗大小评价 大、中、小
    定量评价 均衡电流 均衡电流大小评价 单位:A
    均衡时间 均衡持续时间大小评价 单位:s
    成本 EMS硬件成本大小评价 单位:$
    温度 EMS整体温度大小评价 单位:℃
    电池组容量利用率 电池组容量与最小电池单体容量比值评价 单位:%
    下载: 导出CSV
  • [1] LI B, HANEKLAUS N. The role of clean energy, fossil fuel consumption and trade openness for carbon neutrality in China[J]. Energy Reports, 2022, 8(4): 1090-1098.
    [2] WANG X, WEI X, ZHU J, et al. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management[J]. eTransportation, 2021, 7: 100093. doi: 10.1016/j.etran.2020.100093
    [3] WANG Y, WANG L, LI M, et al. A review of key issues for control and management in battery and ultra-capacitor hybrid energy storage systems[J]. eTransportation, 2020, 4: 100064. doi: 10.1016/j.etran.2020.100064
    [4] HALES A, PROSSER R, BRAVO DIAZ L, et al. The cell cooling coefficient as a design tool to optimise thermal management of lithium-ion cells in battery packs[J]. eTransportation, 2020, 6: 100089. doi: 10.1016/j.etran.2020.100089
    [5] ZHOU Z, CUI Y, KONG X, et al. A fast capacity estimation method based on open circuit voltage estimation for LiNixCoyMn1-x-y battery assessing in electric vehicles[J]. Journal of Energy Storage, 2020, 32: 101830. doi: 10.1016/j.est.2020.101830
    [6] LIU J, WANG Z, HOU Y, et al. Data-driven energy management and velocity prediction for four-wheel-independent-driving electric vehicles[J]. eTransportation, 2021, 9: 100119. doi: 10.1016/j.etran.2021.100119
    [7] SONG Z, YANG X G, YANG N, et al. A study of cell-to-cell variation of capacity in parallel-connected lithium-ion battery cells[J]. eTransportation, 2021, 7: 100091. doi: 10.1016/j.etran.2020.100091
    [8] WANG X, FANG Q, DAI H, et al. Investigation on cell performance and inconsistency evolution of series and parallel lithium-ion battery modules[J]. Energy Technology, 2021, 9(7): 2100072. doi: 10.1002/ente.202100072
    [9] NAGUIB M, KOLLMEYER P, EMADI A. Lithium-ion battery pack robust state of charge estimation, cell inconsistency, and balancing: review[J]. IEEE Access, 2021, 9: 50570-50582. doi: 10.1109/ACCESS.2021.3068776
    [10] FENG X, ZHANG X, XIANG Y. An inconsistency assessment method for backup battery packs based on time -series clustering[J]. Journal of Energy Storage, 2020, 31: 101666. doi: 10.1016/j.est.2020.101666
    [11] ZHENG Y, GAO W, OUYANG M, et al. State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter[J]. Journal of Power Sources, 2018, 383: 50-58. doi: 10.1016/j.jpowsour.2018.02.058
    [12] ZHANG Y, PENG Z, GUAN Y, et al. Prognostics of battery cycle life in the early-cycle stage based on hybrid model[J]. Energy, 2021, 221: 119901. doi: 10.1016/j.energy.2021.119901
    [13] 刘春辉, 任宏斌. 基于SOC的动力电池组主动均衡研究[J]. 储能科学与技术, 2022, 11(2): 667-672. doi: 10.19799/j.cnki.2095-4239.2021.0420

    LIU Chunhui, REN Hongbin. Research on soc-based active balancing of power battery packs[J]. Energy Storage Science and Technology, 2022, 11(2): 667-672. doi: 10.19799/j.cnki.2095-4239.2021.0420
    [14] DURAISAMY T, DEEPA K. Evaluation and comparative study of cell balancing methods for lithium-ion batteries used in electric vehicles[J]. International Journal of Renewable Energy Development, 2021, 10(3): 471-479. doi: 10.14710/ijred.2021.34484
    [15] BARRERAS J V, DE CASTRO R, WAN Y, et al. A consensus algorithm for multi-objective battery balancing[J]. Energies, 2021, 14(14): 4279. doi: 10.3390/en14144279
    [16] ZUN C Y, PARK S U, MOK H S. New cell balancing charging system research for lithium-ion batteries[J]. Energies, 2020, 13(6): 1393. doi: 10.3390/en13061393
    [17] HUI X, SONG D W, SHI F D, et al. Novel voltage equalisation circuit of the lithium battery pack based on bidirectional flyback converter[J]. IET Power Electronics, 2020, 13(11): 2194-2200. doi: 10.1049/iet-pel.2019.1620
    [18] NARAYANASWAMY S, STEINHORST S, LUKASIEWYCZ M, et al. Optimal dimensioning and control of active cell balancing architectures[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9632-9646. doi: 10.1109/TVT.2019.2936646
    [19] 刘征宇, 夏登威, 姚利阳, 等. 基于耦合绕组的锂电池组主动均衡方案研究[J]. 电机与控制学报, 2021, 25(2): 54-64. doi: 10.15938/j.emc.2021.02.007

    LIU Zhengyu, XIA Dengwei, YAO Liyang, et al. Research on active equalization scheme of lithium battery pack based on coupling winding[J]. Electric Machines and Control, 2021, 25(2): 54-64. doi: 10.15938/j.emc.2021.02.007
    [20] HABIB A, HASAN M K, MAHMUD M, et al. A review: Energy storage system and balancing circuits for electric vehicle application[J]. IET Power Electronics, 2021, 14(1): 1-13. doi: 10.1049/pel2.12013
    [21] DAM S K, JOHN V. Low-frequency selection switch based cell-to-cell battery voltage equalizer with reduced switch count[J]. IEEE Transactions on Industry Applications, 2021, 57(4): 3842-3851. doi: 10.1109/TIA.2021.3075184
    [22] PENG F X, WANG H Y, YU L. Analysis and design considerations of efficiency enhanced hierarchical battery equalizer based on bipolar ccm buck-boost units[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 4053-4063. doi: 10.1109/TIA.2019.2916493
    [23] 郭向伟, 刘震, 康龙云, 等. 一种单电感串并联电池组均衡方法[J]. 电机与控制学报, 2021, 25(12): 87-95. doi: 10.15938/j.emc.2021.12.010

    GUO Xiangwei, LIU Zhen, KANG Longyun, et al. A single inductor series-parallel battery pack equalization method[J]. Electric Machines and Control, 2021, 25(12): 87-95. doi: 10.15938/j.emc.2021.12.010
    [24] KOSEOGLOU M, TSIOUMAS E, JABBOUR N, et al. Highly effective cell equalization in a lithium-ion battery management system[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 2088-2099. doi: 10.1109/TPEL.2019.2920728
    [25] ZHANG Z Y, ZHANG L Z, HU L, et al. Active cell balancing of lithium-ion battery pack based on average state of charge[J]. International Journal of Energy Research, 2020, 44(4): 2535-2548. doi: 10.1002/er.4876
    [26] WU Q X, GAO M Y, LIN H P, et al. A bimodal multichannel battery pack equalizer based on a quasi-resonant two-transistor forward converter[J]. Energies, 2021, 14(4): 1112. doi: 10.3390/en14041112
    [27] GHAEMINEZHAD N, OUYANG Q, HU X S, et al. Active cell equalization topologies analysis for battery packs: A systematic review[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9119-9135. doi: 10.1109/TPEL.2021.3052163
    [28] CAO Y L, LI K, LU M. Balancing method based on flyback converter for series-connected cells[J]. IEEE Access, 2021, 9: 52393-52403. doi: 10.1109/ACCESS.2021.3070047
    [29] UNO M, YOSHINO K. Modular equalization system using dual phase-shift-controlled capacitively isolated dual active bridge converters to equalize cells and modules in series-connected lithium-ion batteries[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 2983-2995. doi: 10.1109/TPEL.2020.3013653
    [30] CAO J W, XIA B Z, ZHOU J. An active equalization method for lithium-ion batteries based on flyback transformer and variable step size generalized predictive control[J]. Energies, 2021, 14(1): 207. doi: 10.3390/en14010207
    [31] DAS U K, SHRIVASTAVA P, TEY K S, et al. Advancement of lithium-ion battery cells voltage equalization techniques: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110227. doi: 10.1016/j.rser.2020.110227
    [32] 华旸, 周思达, 何瑢, 等车用锂离子动力电池组均衡管理系统研究进展[J]. 机械工程学报, 2019, 55(20): 73-84. doi: 10.3901/JME.2019.20.073

    HUA Yang, ZHOU Sida, HE Rong, et al. Research progress on the balanced management system of automotive lithium-ion power battery pack[J]. Journal of Mechanical Engineering, 2019, 55(20): 73-84. doi: 10.3901/JME.2019.20.073
    [33] FENG F, HU X, LIU J, et al. A review of equalization strategies for series battery packs: variables, objectives, and algorithms[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109464. doi: 10.1016/j.rser.2019.109464
    [34] YANG H, ZHOU S D, CUI H G, et al. A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles[J]. International Journal of Energy Research, 2020, 44(14): 11059-11087. doi: 10.1002/er.5683
    [35] 蔡敏怡, 张娥, 林靖, 等. 串联锂离子电池组均衡拓扑综述[J]. 中国电机工程学报, 2021, 41(15): 5294-5311. doi: 10.13334/J.0258-8013.PCSEE.201749

    CAI Minyi, ZHANG E, LIN Jing, et al. A review of series lithium-ion battery pack equalization topology[J]. Proceedings of the CSEE, 2021, 41(15): 5294-5311. doi: 10.13334/J.0258-8013.PCSEE.201749
    [36] LV J, SONG W J, FENG Z P, et al. Performance and comparison of equalization methods for lithium ion batteries in series[J]. International Journal of Energy Research, 2021, 45(3): 4669-4680. doi: 10.1002/er.6130
    [37] DAI S, ZHANG F, ZHAO X. Series-connected battery equalization system: A systematic review on variables, topologies, and modular methods[J]. International Journal of Energy Research, 2021, 45(14): 19709-19728. doi: 10.1002/er.7053
    [38] TURKSOY A, TEKE A, ALKAYA A. A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110274. doi: 10.1016/j.rser.2020.110274
    [39] CARTER J, FAN Z, CAO J. Cell equalisation circuits: A review[J]. Journal of Power Sources, 2020, 448: 227489. doi: 10.1016/j.jpowsour.2019.227489
    [40] ALVAREZ-DIAZCOMAS A, ESTEVEZ-BEN A A, RODRIGUEZ-RESENDIZ J, et al. A review of battery equalizer circuits for electric vehicle applications[J]. Energies, 2020, 13(21): 5688. doi: 10.3390/en13215688
    [41] OMARIBA Z B, ZHANG L J, SUN D B. Review of battery cell balancing methodologies for optimizing battery pack performance in electric vehicles[J]. IEEE Access, 2019, 7: 129335-129352. doi: 10.1109/ACCESS.2019.2940090
    [42] GALLARDO-LOZANO J, ROMERO-CADAVAL E, MILANES-MONTERO M I, et al. Battery equalization active methods[J]. Journal of Power Sources, 2014, 246: 934-949. doi: 10.1016/j.jpowsour.2013.08.026
    [43] YANG R, GAO L, WU T, et al. Comparative study on equalization technology of lithium battery packs for electric vehicle[C/CD]// 2019 5th International Conference on Energy Equipment Science and Engineering (ICEESE), November 29 - December, 1, 2019, Harbin, China. Earth and Environmental Science, 2020.
    [44] 王鹿军, 单恩泽. 基于动态式双阈值的锂电池组主被动均衡策略[J]. 电机与控制学报, 2022, 26(1): 126-136. doi: 10.15938/j.emc.2022.01.014

    WANG Lujun, SHAN Enze. Active-passive equalization strategy for lithium battery pack based on dynamic dual threshold[J]. Electric Machines and Control, 2022, 26(1): 126-136. doi: 10.15938/j.emc.2022.01.014
    [45] ZHENG Y, OUYANG M, LU L, et al. Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution[J]. Journal of Power Sources, 2015, 278: 287-295. doi: 10.1016/j.jpowsour.2014.12.105
    [46] 魏芃, 蔡涛, 朝泽云, 等. 电池均衡系统的分布式协同一致性控制策略[J]. 中国电机工程学报, 2021, 41(3): 908-921. doi: 10.13334/J.0258-8013.PCSEE.192064

    WEI Peng, CAI Tao, CHAO Zeyun, et al. Distributed cooperative consistency control strategy for battery equalization system[J]. Proceedings of the CSEE, 2021, 41(3): 908-921. doi: 10.13334/J.0258-8013.PCSEE.192064
    [47] 郑岳久. 车用锂离子动力电池组的一致性研究[D]. 北京: 清华大学, 2014.

    ZHENG Yuejiu. Consistency study of lithium-ion power battery packs for vehicles[D]. Beijing: Tsinghua University, 2014.
    [48] 汪宜秀, 魏学哲, 房乔华, 等. 面向整组寿命最大化的电动汽车电池一致性变化规律及其均衡策略[J]. 机械工程学报, 2020, 56(22): 176-183. doi: 10.3901/JME.2020.22.176

    WANG Yixiu, WEI Xuezhe, FANG Qiaohua, et al. Battery consistency variation law and its equalization strategy for electric vehicles with a view to maximizing the whole pack life[J]. Journal of Mechanical Engineering, 2020, 56(22): 176-183. doi: 10.3901/JME.2020.22.176
    [49] SUN W B, LI Y L, LIU L Z, et al. A switched-capacitor battery equalization method for improving balancing speed[J]. IET Electric Power Applications, 2021, 15(5): 555-569. doi: 10.1049/elp2.12045
    [50] YANG X G, XI L G, GAO Z, et al. Analysis and design of a voltage equalizer based on boost full-bridge inverter and symmetrical voltage multiplier for series-connected batteries[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3828-3840. doi: 10.1109/TVT.2020.2974530
    [51] WANG S C, YANG S Y, YANG W, et al. A new kind of balancing circuit with multiple equalization modes for serially connected battery pack[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2142-2150.
    [52] WU L, PANG K, ZHENG Y, et al. A multi-module equalization system for lithium-ion battery packs[J]. International Journal of Energy Research, 2021, 46(3): 2771-2782.
    [53] SU L, WANG Z P, REN Y H. A novel two-steps method for estimation of the capacity imbalance among in-pack cells[J]. Journal of Energy Storage, 2019, 26: 101031. doi: 10.1016/j.est.2019.101031
    [54] QI X, WANG Y, FANG M, et al. A reduced- component-count centralized equalization system for series-connected battery packs based on a novel integrated cascade topology[J]. IEEE Transactions on Industry Applications, 2021, 57(6): 6105-6116. doi: 10.1109/TIA.2021.3103482
    [55] DONG G Z, YANG F F, TSUI K L, et al. Active balancing of lithium-ion batteries using graph theory and a-star search algorithm[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2587-2599. doi: 10.1109/TII.2020.2997828
    [56] QI X B, WANG Y, FANG M Z. An integrated cascade structure-based isolated bidirectional DC-DC converter for battery charge equalization[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12003-12021. doi: 10.1109/TPEL.2020.2988661
    [57] WAN L, CHEN Y, ZHOU Y, et al. Design of balanced charging circuit for lithium ion battery[C]// 38th Chinese Control Conference (CCC), July 27-30, 2019, Guangzhou, China, IEEE, 2019: 6476-6480.
    [58] JIAQIANG E J, ZHANG B, ZENG Y, et al. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge[J]. Energy, 2022, 238: 121822. doi: 10.1016/j.energy.2021.121822
    [59] SEE K, LIM K C, BATTERNALLY S, et al. Charge based self-equalization for imbalance battery pack in an energy storage management system developing a time-based equalization algorithm[J]. IEEE Consumer Electronics Magazine, 2019, 8(2): 16-21. doi: 10.1109/MCE.2018.2880805
    [60] VAN C N, VINH T N, NGO M-D, et al. Optimal soc balancing control for lithium-ion battery cells connected in series[J]. Energies, 2021, 14(10): 2875. doi: 10.3390/en14102875
    [61] HEIN T, ZIEGLER A, OESER D, et al. A capacity-based equalization method for aged lithium-ion batteries in electric vehicles[J]. Electric Power Systems Research, 2021, 191: 106898. doi: 10.1016/j.epsr.2020.106898
    [62] ZHENG Y, OUYANG M, LU L, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation[J]. Journal of Power Sources, 2014, 247: 676-686. doi: 10.1016/j.jpowsour.2013.09.030
    [63] ZHENG Y, OUYANG M, LU L, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 2. Fuzzy logic equalization[J]. Journal of Power Sources, 2014, 247: 460-466. doi: 10.1016/j.jpowsour.2013.09.012
    [64] SONG L J, LIANG T Y, LU L G, et al. Lithium-ion battery pack equalization based on charging voltage curves[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: 105516.
    [65] HAN W J, ZOU C F, ZHANG L, et al. Near-fastest battery balancing by cell/module reconfiguration[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6954-6964. doi: 10.1109/TSG.2019.2915013
    [66] WU X G, CUI Z H, LI X F, et al. Control strategy for active hierarchical equalization circuits of series battery packs[J]. Energies, 2019, 12(11): 2071. doi: 10.3390/en12112071
    [67] OUYANG Q, HAN W J, ZOU C F, et al. Cell balancing control for lithium-ion battery packs: A hierarchical optimal approach[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5065-5075. doi: 10.1109/TII.2019.2950818
    [68] LEE S, KIM M, BAEK J W, et al. Enhanced switching pattern to improve cell balancing performance in active cell balancing circuit using multi-winding transformer[J]. IEEE Access, 2020, 8: 149544-149554. doi: 10.1109/ACCESS.2020.3015963
    [69] DING X F, ZHANG D H, CHENG J W, et al. A novel active equalization topology for series-connected lithium-ion battery packs[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6892-6903. doi: 10.1109/TIA.2020.3015820
    [70] YANG Y, ZHU W C, XIE C J, et al. A layered bidirectional active equalization method for retired power lithium-ion batteries for energy storage applications[J]. Energies, 2020, 13(4): 832. doi: 10.3390/en13040832
    [71] LU J L, WANG Y, LI X. Isolated bidirectional DC-DC converter with quasi-resonant zero-voltage switching for battery charge equalization[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4388-4406. doi: 10.1109/TPEL.2018.2858138
    [72] LA P H, CHOI S J. Novel dynamic resistance equalizer for parallel-connected battery configurations[J]. Energies, 2020, 13(13): 3315. doi: 10.3390/en13133315
    [73] HSIEH Y C, HUANG Y C, CHUANG P C. A charge-equalization circuit with an intermediate resonant energy tank[J]. Energies, 2020, 13(24): 6566 doi: 10.3390/en13246566
    [74] WANG X L, CHENG K W E, FONG Y C. Zero current switching switched-capacitors balancing circuit for energy storage cell equalization and its associated hybrid circuit with classical buck-boost[J]. Energies, 2019, 12(14): 2726. doi: 10.3390/en12142726
    [75] LI X, LYU L, GENG G, et al. Power allocation strategy for battery energy storage system based on cluster switching[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3700-3710. doi: 10.1109/TIE.2021.3076731
    [76] KHALID A, HERNANDEZ A, SUNDARARAJAN A, et al. Simulation-based analysis of equalization algorithms on active balancing battery topologies for electric vehicles[M/OL]. Cham: Springer, 2020 [2022-06-28]. https://link.springer.com/chapter/10.1007/978-3-030-32520-6_52#chapter-info.
    [77] WANG B, QIN F F, ZHAO X B, et al. Equalization of series connected lithium-ion batteries based on back propagation neural network and fuzzy logic control[J]. International Journal of Energy Research, 2020, 44(6): 4812-4826. doi: 10.1002/er.5274
    [78] LIAO H T, JIANG F, JIN C, et al. Lithium-ion battery soc equilibrium: an artificial potential field-based method[J]. Energies, 2020, 13(21): 5691. doi: 10.3390/en13215691
    [79] WU T Z, JI F, LIAO L, et al. Voltage-soc balancing control scheme for series-connected lithium-ion battery packs[J]. Journal of Energy Storage, 2019, 25: 100895. doi: 10.1016/j.est.2019.100895
    [80] ZHANG H K, WANG Y F, QI H, et al. Active battery equalization method based on redundant battery for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7531-7543. doi: 10.1109/TVT.2019.2925742
    [81] ZHANG Y L, HONG Y, CHOI K. Optimal energy-dissipation control for SOC based balancing in series connected Lithium-ion battery packs[J]. Multimedia Tools and Applications, 2020, 79(23-24): 15923-15944. doi: 10.1007/s11042-018-6655-4
    [82] CHEN X, HU G D, GUO F, et al. Switched energy management strategy for fuel cell hybrid vehicle based on switch network[J]. Energies, 2020, 13(1): 247. doi: 10.3390/en13010247
    [83] LI X L, XU J P, XU S G, et al. Modularised non-isolated two-switch equaliser using full-wave voltage multiplier for series-connected battery/super-capacitor[J]. IET Power Electronics, 2019, 12(4): 869-877. doi: 10.1049/iet-pel.2018.5567
    [84] LI D M, WU Z J, ZHAO B, et al. An improved droop control for balancing state of charge of battery energy storage systems in ac microgrid[J]. IEEE Access, 2020, 8: 71917-71929. doi: 10.1109/ACCESS.2020.2987098
    [85] ROY D, NARAYANASWAMY S, PROBSTL A, et al. Optimal scheduling for active cell balancing[C]// 2019 IEEE Real-Time Systems Symposium (RTSS), December 03-06, 2019, IEEE, 2020: 120-132.
    [86] WEI Y, DAI S, WANG J, et al. Switch matrix algorithm for series lithium battery pack equilibrium based on derived acceleration information Gauss-Seidel[J]. Mathematical Problems in Engineering, 2019, 2019: 5159497.
    [87] PIROOZ A, FIROUZ Y, BERECIBAR M, et al. Battery voltage equalisation using single-phase cascaded H-bridge converters[J]. IET Power Electronics, 2020, 13(18): 4158-4167. doi: 10.1049/iet-pel.2020.0522
    [88] CHEN Y, SHEN T, YANG S Y, et al. A path planning strategy with ant colony algorithm for series connected batteries[J]. Electronics, 2020, 9(11): 1816. doi: 10.3390/electronics9111816
    [89] SUN J L, LIU W, TANG C Y, et al. A novel active equalization method for series-connected battery packs based on clustering analysis with genetic algorithm[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7853-7865. doi: 10.1109/TPEL.2021.3049166
    [90] 李军, 黄志祥, 唐爽. 基于K最近邻遗传算法的电池均衡策略[J]. 汽车安全与节能学报, 2019, 10(4): 525-530. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201904015.htm

    LI Jun, HUANG Zhixiang, TANG Shuang. Battery equalization strategy based on K-nearest neighbor genetic algorithm[J]. Journal of Automotive Safety and Energy, 2019, 10(4): 525-530. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201904015.htm
    [91] HOQUE M M, HANNAN M A, MOHAMED A. Charging and discharging model of lithium-ion battery for charge equalization control using particle swarm optimization algorithm[J]. Journal of Renewable and Sustainable Energy, 2016, 8(6): 065701. doi: 10.1063/1.4967972
    [92] WU T, QI Y, LIAO L, et al. Research on equalization strategy of lithium-ion batteries based on fuzzy logic control[J]. Journal of Energy Storage, 2021, 40: 102722. doi: 10.1016/j.est.2021.102722
    [93] IMTIAZ A M, KHAN F H. "Time Shared Flyback Converter" Based regenerative cell balancing technique for series connected li-ion battery strings[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5960-5975. doi: 10.1109/TPEL.2013.2257861
    [94] LIU K L, YANG Z L, TANG X P, et al. Automotive battery equalizers based on joint switched-capacitor and buck-boost converters[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12716-12724. doi: 10.1109/TVT.2020.3019347
    [95] SHANG Y L, ZHANG Q, CUL N X, et al. Multicell-to-multicell equalizers based on matrix and half-bridge LC converters for series-connected battery strings[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1755-1766. doi: 10.1109/JESTPE.2019.2893167
    [96] 王敏旺, 吴华伟, 刘祯. 一种面向电池组均衡模型的定量评价体系[J]. 储能科学与技术, 2021, 10(1): 271-279. doi: 10.19799/j.cnki.2095-4239.2020.0260

    WANG Minwang, WU Huawei, LIU Zhen. A quantitative evaluation system for battery pack equilibrium model[J]. Energy Storage Science and Technology, 2021, 10(1): 271-279. doi: 10.19799/j.cnki.2095-4239.2020.0260
    [97] LAI X, CHEN Q, TANG X, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective[J]. eTransportation, 2022, 12: 100169. doi: 10.1016/j.etran.2022.100169
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-09-02
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回