留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车车轮型面多目标优化研究

祁亚运 戴焕云 干锋

祁亚运, 戴焕云, 干锋. 高速列车车轮型面多目标优化研究[J]. 机械工程学报, 2022, 58(24): 188-197. doi: 10.3901/JME.2022.24.188
引用本文: 祁亚运, 戴焕云, 干锋. 高速列车车轮型面多目标优化研究[J]. 机械工程学报, 2022, 58(24): 188-197. doi: 10.3901/JME.2022.24.188
QI Yayun, DAI Huanyun, GAN Feng. Optimization of Wheel Profiles for High-speed Trains[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 188-197. doi: 10.3901/JME.2022.24.188
Citation: QI Yayun, DAI Huanyun, GAN Feng. Optimization of Wheel Profiles for High-speed Trains[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 188-197. doi: 10.3901/JME.2022.24.188

高速列车车轮型面多目标优化研究

doi: 10.3901/JME.2022.24.188
基金项目: 

国家自然科学基金 11202128

国家自然科学基金 U1934202

国家自然科学基金 51975485

重庆市基础研究与前沿探索 cstc2021jcyj-msxmX0621

重庆市教育委员会科学技术研究 KJQN202100711

详细信息
    作者简介:

    祁亚运, 男, 1990年出生, 博士, 讲师。主要研究方向为轨道车辆动力学与轮轨接触关系。E-mail: yayun_qi@163.com

    通讯作者:

    戴焕云(通信作者), 男, 1966年出生, 博士, 研究员, 博士研究生导师。主要研究方向为轨道车辆动力学。E-mail: daihuanyun@163.com

  • 中图分类号: U270

Optimization of Wheel Profiles for High-speed Trains

  • 摘要: 对于动车组车轮磨耗引起的动力学性能降低问题,车轮型面优化是一个很好的解决方案。采用旋转压缩微调法(Rotary-scaling fine-tuning method,RSFT)进行型面生成;建立某型动车组车辆动力学模型,采用该模型计算相应的优化目标和约束条件;利用径向基神经网络-粒子群(Radial-based neural network-particle swarm optimization,RBF-PSO)算法优化出最优廓形。通过对比优化前后车轮型面的动力学性能和磨耗性能,可以发现:优化后车轮型面临界速度为424.6 km/h,增大10.2%;横向平稳性和垂向平稳性指标整体减小,同时提高了曲线通过时的安全性指标,脱轨系数、倾覆系数和轮轴横向力都进一步减小。优化后车轮型面接触点分布相对更加均匀,等效锥度减小。同时优化后车轮型面有效减小车轮磨耗深度,并减小了轮缘根部磨耗,车轮最大磨耗深度减小9.8%。

     

    对于动车组车轮磨耗引起的动力学性能降低问题,车轮型面优化是一个很好的解决方案。采用旋转压缩微调法(Rotary-scaling fine-tuning method,RSFT)进行型面生成;建立某型动车组车辆动力学模型,采用该模型计算相应的优化目标和约束条件;利用径向基神经网络-粒子群(Radial-based neural network-particle swarm optimization,RBF-PSO)算法优化出最优廓形。通过对比优化前后车轮型面的动力学性能和磨耗性能,可以发现:优化后车轮型面临界速度为424.6 km/h,增大10.2%;横向平稳性和垂向平稳性指标整体减小,同时提高了曲线通过时的安全性指标,脱轨系数、倾覆系数和轮轴横向力都进一步减小。优化后车轮型面接触点分布相对更加均匀,等效锥度减小。同时优化后车轮型面有效减小车轮磨耗深度,并减小了轮缘根部磨耗,车轮最大磨耗深度减小9.8%。
  • 图  实测车体和构架横向加速度

    图  车辆动力学模型建立

    图  高速线路不平顺

    图  采用RSFT方法进行车轮型面生成(${\alpha _1}$=0.94,${\alpha _2}$=1.02)

    图  RBF神经网络示意图

    图  粒子群算法流程

    图  车轮型面优化过程

    图  RBF-PSO算法优化

    图  优化前后车轮型面(XP55和XP55opt)

    图  10  车轮型面优化前后的临界速度

    图  11  车轮型面优化前后的平稳性指标

    图  12  车轮型面优化前后的安全性指标

    图  13  车轮型面优化前后的轮轨接触点分布

    图  14  车轮型面优化前后的等效锥度

    图  15  USFD磨耗率

    图  16  车轮型面优化前后的磨耗深度

    表  1  平稳性频率修正系数

    垂向振动 横向振动
    0.5~5.9 Hz $F\left( f \right) = 0.325{f^2}$ 0.5~5.4 Hz $ F(f) = 0.8{f^2} $
    5.9~20 Hz $F\left( f \right) = 400/{f^2}$ 5.4~26Hz $F\left( f \right) = 650/{f^2}$
    > 20 Hz $F\left( f \right) = 1$ > 26 Hz $F\left( f \right) = 1$
    下载: 导出CSV

    表  2  高速线路典型计算工况

    曲线半径/m 超高/mm 缓和曲线长/m 圆曲线长/m 运行速度/ (km·h−1) 所占比例(%)
    直线 300 60
    12 000 80 220 480 300 1
    9 000 100 300 320 300 7
    8 000 120 340 250 300 8
    7 000 145 360 210 300 10
    5 500 165 360 210 300 7
    5 000 120 360 210 300 7
    下载: 导出CSV
  • [1] 金学松, 刘启跃. 轮轨摩擦学[M]. 北京: 中国铁道出版社, 2004.

    JIN Xuesong, LIU Qiyue. Wheel and rail tribology[M]. Beijing: China Railway Press, 2004.
    [2] 金学松, 赵国堂, 梁树林, 等. 高速铁路轮轨磨损特征、机理、影响和对策——车轮踏面横向磨耗[J]. 机械工程学报, 2018, 54(4): 3-13. doi: 10.3901/JME.2018.04.003

    JIN Xuesong, ZHAO Guotang, LIANG Shulin, et al. Characteristics, mechanisms, influences and counter measures of high speed wheel/rail wear: Transverse wear of wheel tread[J]. Journal of Mechanical Engineering, 2018, 54(4): 3-13. doi: 10.3901/JME.2018.04.003
    [3] 李凡松, 王建斌, 石怀龙, 等. 动车组车体异常弹性振动原因及抑制措施研究[J]. 机械工程学报, 2019, 55(12): 178-188. doi: 10.3901/JME.2019.12.178

    LI Fansong, WANG Jianbin, SHI Huailong, et al. Research on the causes of abnormal elastic vibration of the EMU car body and restraint measures[J]. Journal of Mechanical Engineering, 2019, 55(12): 178-188. doi: 10.3901/JME.2019.12.178
    [4] LEWIS R, OLOFSSON U. Wheel-rail interface handbook[M]. Boca Raton: CRC/Taylor & Francis, 2009.
    [5] SHEN G, AYASSE J B, CHOLLET H, et al. A unique design method for wheel profiles by considering the contact angle function[J]. Journal of Rail and Rapid Transit, 2003, 217(1): 25-30. doi: 10.1243/095440903762727320
    [6] SHEVTSOV I Y, MARKINE V L, ESVELD C. Optimal design of wheel profile for railway vehicles[C]//Proceedings 6th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Gothenburg, Sweden, 2003: 231-236.
    [7] POLACH O. Wheel profile design for target conicity and wide tread wear spreading[J]. Wear, 2011, 271(1): 195-202.
    [8] CUI D, LI L, JIN X, et al. Optimal design of wheel profiles based on weighed wheel/rail gap[J]. Wear, 2011, 271: 218-226. doi: 10.1016/j.wear.2010.10.005
    [9] LIN F, ZHOU S, DONG X, et al. Design method of LM thin flange wheel profile based on NURBS[J]. Vehicle System Dynamics, 2019(9): 17-32.
    [10] 干锋, 戴焕云, 池茂儒, 等. 铁道车辆车轮踏面反向设计方法研究[J]. 铁道学报, 2015, 37(9): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201509003.htm

    GAN Feng, DAI Huanyun, CHI Maoru, et al. A reverse optimal design method for wheel tread of railway vehicle[J]. Journal of the China Railway Society, 2015, 37(9): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201509003.htm
    [11] 张剑, 温泽峰, 孙丽萍, 等. 基于钢轨型面扩展法的车轮型面设计[J]. 机械工程学报, 2008, 44 (3): 44-49. doi: 10.3321/j.issn:0577-6686.2008.03.008

    ZHANG Jian, WEN Zefeng, SUN Liping, et al. Wheel profile design based on rail profile expansion method[J]. Journal of Mechanical Engineering, 2008, 44 (3): 44-49. doi: 10.3321/j.issn:0577-6686.2008.03.008
    [12] 崔大宾, 赵锐, 李俊, 等. 面向轮缘磨耗的动车组车轮型面多目标优化设计[J]. 机械工程学报, 2019, 55(16): 104-113. doi: 10.3901/JME.2019.16.104

    CUI Dabin, ZHAO Rui, LI Jun, et al. Multi-objective optimization of EMU wheel profile oriented to flange wear control[J]. Journal of Mechanical Engineering, 2019, 55(16): 104-113. doi: 10.3901/JME.2019.16.104
    [13] SPANGENBERG U, FRÖHLING R D, ELS P S. Long-term wear and rolling contact fatigue behaviour of a conformal wheel profile designed for large radius curves[J]. Vehicle System Dynamics, 2018, 57: 44-63.
    [14] PERSSON I, IWNICKI S D. Optimisation of railway profiles using a genetic algorithm[J]. Vehicle System Dynamics, 2004, 41: 517-527.
    [15] NOVALES M, ORRO A, BUGARÍN M R. Use of a genetic algorithm to optimise wheel profile geometry[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221: 467-476.
    [16] CHOI H Y, LEE D H, LEE J. Optimization of a railway wheel profile to minimize flange wear and surface fatigue[J]. Wear, 2013, 300: 225-233.
    [17] YE Y, QI Y, SHI D, et al. Rotary-scaling fine-tuning (RSFT) method for optimizing railway wheel profiles and its application to a locomotive[J]. Railway Engineering Science, 2020, 28(2): 160-183.
    [18] YE Y, VUITTON J, SUN Y, et al. Railway wheel profile fine-tuning system for profile recommendation[J]. Railway Engineering Science, 2021, 29: 74-93.
    [19] 文永蓬, 郑晓明, 吴爱中, 等. 基于BESO算法的城市轨道车轮拓扑优化[J]. 机械工程学报, 2020, 56(10): 191-199. doi: 10.3901/JME.2020.10.191

    WEN Yongpeng, ZHENG Xiaoming, WU Aizhong, et al. Topology optimization of urban rail wheel based on BESO algorithm[J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199. doi: 10.3901/JME.2020.10.191
    [20] 郑晓明, 文永蓬, 尚慧琳, 等. 考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J]. 交通运输工程学报, 2019, 19(5): 84-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201905011.htm

    ZHENG Xiaoming, WEN Yongpeng, SHANG Huilin, et al. Evolutionary structure topology optimiasation method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201905011.htm
    [21] EKBERG A, KABO E, ANDERSSON H. An engineering model for prediction of rolling contact fatigue of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(10): 899-909.
    [22] BS EN 15313. UNE-EN 15313-2017 Railway applications. In-service wheelset operation requirements[S]. Madrid: UNE, 2016.
    [23] 黄彩虹, 罗仁, 曾京, 等. 系统参数对高速列车车轮踏面凹陷磨耗的影响[J]. 交通运输工程学报, 2016, 16(3): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201603007.htm

    HUANG Caihong, LUO Ren, ZENG Jing, et al. Effect of system parameters on tread-hollow wear of high-speed train wheels[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201603007.htm
    [24] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 5599-2019机车车辆动力学性能评定及试验鉴定规范[S]. 北京: 中国标准出版社, 2019.

    State Market Regulatory Administration, SAC. GB/T 5599-2019 Specification for dynamic performance assessment and testing verification of rolling stock[S]. Beijing: Standards Press of China, 2019.
    [25] 石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1): 36-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101005.htm

    SHI Huailong, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation Criteria of high speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 36-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101005.htm
    [26] LEWIS R, DWYER-JOYCE R S, OLOFSSON U, et al. Mapping railway wheel material wear mechanisms and transitions[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224: 125-137.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-11-05
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回