留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双离合变速器预选档策略下齿轮敲击动力学分析

郭栋 周仪 周益 罗瑞田 任杰

郭栋, 周仪, 周益, 罗瑞田, 任杰. 双离合变速器预选档策略下齿轮敲击动力学分析[J]. 机械工程学报, 2022, 58(24): 198-210. doi: 10.3901/JME.2022.24.198
引用本文: 郭栋, 周仪, 周益, 罗瑞田, 任杰. 双离合变速器预选档策略下齿轮敲击动力学分析[J]. 机械工程学报, 2022, 58(24): 198-210. doi: 10.3901/JME.2022.24.198
GUO Dong, ZHOU Yi, ZHOU Yi, LUO Ruitian, REN Jie. Dynamic Analysis of Gear Rattle under Pre-selection Strategy of Dual Clutch Transmission[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 198-210. doi: 10.3901/JME.2022.24.198
Citation: GUO Dong, ZHOU Yi, ZHOU Yi, LUO Ruitian, REN Jie. Dynamic Analysis of Gear Rattle under Pre-selection Strategy of Dual Clutch Transmission[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 198-210. doi: 10.3901/JME.2022.24.198

双离合变速器预选档策略下齿轮敲击动力学分析

doi: 10.3901/JME.2022.24.198
基金项目: 

国家自然科学基金资助项目 51975080

详细信息
    作者简介:

    周仪, 男, 1997年出生, 硕士研究生。主要研究方向为汽车传动系统NVH。E-mail: zhouyi@2019.cqut.edu.cn

    通讯作者:

    郭栋(通信作者), 男, 1983年出生, 博士, 副教授, 硕士研究生导师。主要研究方向为汽车传动系统NVH技术, 新型高性能传动技术。E-mail: guodong@cqut.edu.cn

  • 中图分类号: TB533;U463

Dynamic Analysis of Gear Rattle under Pre-selection Strategy of Dual Clutch Transmission

  • 摘要: 双离合自动变速器(Dual clutch transmission,DCT)在预选档状态下具有换档无动力中断和换档平顺等优点,然而在预选档策略下双离合自动变速器的齿轮敲击问题更加突出。以某型湿式双离合变速器为研究对象,分别建立变速器1档无预选以及预选2档下的齿轮敲击动力学模型。模型中各空套齿轮拖曳力矩包括齿轮搅油阻力矩、轴承阻力矩以及同步器阻力矩,此外,模型还考虑了变速器非功率流中未结合状态下离合器所产生的拖曳力矩。齿轮接触模型在考虑齿面弹性接触的基础上,计入了由润滑效应引起的齿隙间非线性油膜力。运用龙格库塔算法对模型求解,获得各齿轮副的动态响应。通过变速器敲击台架试验验证了动力学模型的可行性,计算结果与试验结果具有较好的一致性。对变速器齿轮动力学响应的研究结果表明:在一定角加速度激励下,变速器中空套齿轮存在明显的双面敲击现象;预选档位并不会对无预选状态下已发生敲击的齿轮副产生影响,但是预选档后,变速器非功率流分支发生改变,变速器内空套齿轮数量增多,整体上使变速器敲击问题更加突出。

     

    双离合自动变速器(Dual clutch transmission,DCT)在预选档状态下具有换档无动力中断和换档平顺等优点, 然而在预选档策略下双离合自动变速器的齿轮敲击问题更加突出。以某型湿式双离合变速器为研究对象,分别建立变速器1档无预选以及预选2档下的齿轮敲击动力学模型。模型中各空套齿轮拖曳力矩包括齿轮搅油阻力矩、轴承阻力矩以及同步器阻力矩,此外,模型还考虑了变速器非功率流中未结合状态下离合器所产生的拖曳力矩。齿轮接触模型在考虑齿面弹性接触的基础上,计入了由润滑效应引起的齿隙间非线性油膜力。运用龙格库塔算法对模型求解,获得各齿轮副的动态响应。通过变速器敲击台架试验验证了动力学模型的可行性,计算结果与试验结果具有较好的一致性。对变速器齿轮动力学响应的研究结果表明:在一定角加速度激励下,变速器中空套齿轮存在明显的双面敲击现象;预选档位并不会对无预选状态下已发生敲击的齿轮副产生影响,但是预选档后,变速器非功率流分支发生改变,变速器内空套齿轮数量增多,整体上使变速器敲击问题更加突出。
  • 图  双离合自动变速器结构图

    图  变速器敲击台架试验

    图  转速传感器布置

    图  壳体大平面振动加速度瀑布图

    图  左悬置位置振动加速度瀑布图

    图  大平面测点振动加速度曲线

    图  左悬置测点振动加速度曲线

    图  DCT齿轮敲击动力学模型

    图  DCT齿轮啮合刚度

    图  10  摩擦盘间润滑油状态

    图  11  无预选档位下空套齿轮角加速度幅值

    图  12  1档预选2档下空套齿轮角加速度幅值

    图  13  1档预选2档下各档齿轮相对位移

    图  14  1档预选2档下各档齿轮啮合力

    图  15  预选档下2档齿轮相对位移对比

    图  16  预选档下2档动态啮合力对比

    表  1  台架试验工况

    台架试验工况参数 档位
    1档无预选 1档预选2档
    油温/℃ 60
    输入转速/(r/min) 1 500
    驱动力矩/(N·m) 80
    角加速度激励/(rad·s−2) 0~90 s内从0增加到1 500 rad·s−2
    下载: 导出CSV

    表  2  齿轮参数

    参数 1档 2档 3档 4档 5档 6档 7档 R档
    齿数 13/58 17/48 32/51 35/39 47/40 35/27 47/30 27/37
    模数/mm 2.10 2.3 1.95 2.25 1.85 2.25 1.85 3.15
    压力角/(°) 20.0 20 17.3 17.3 17.3 17.3 17.3 17.3
    螺旋角/(°) 23.1 22.3 30.3 29.0 31.0 29.0 31.0 20.0
    下载: 导出CSV
  • [1] 吴光强, 吴虎威, 李迪. 汽车变速器齿轮敲击动力学问题研究综述[J]. 同济大学学报, 2016, 44(2): 276-285. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201602017.htm

    WU Guangqiang, WU Huwei, LI Di. Review of automotive transmission gear rattle[J]. Journal of Tongji University, 2016, 44(2): 276-285. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201602017.htm
    [2] SINGH R, XIE H, COMPARIN R J. Analysis of automotive neutral grear rattle[J]. Journal of Sound and Vibration, 1989, 131(2) : 177-196. doi: 10.1016/0022-460X(89)90485-9
    [3] SAKAI T, DOIY, YAMAMOTO K, et al. Theoretical and experimental analysis of rattling noise of automotive gearbox[R]. SAE, 810773, 1981.
    [4] WANG M, MANOJ R, ZHAO W. Gear rattle modelling and analysis for automotive manual transmissions[J]. I. Mech. E. Part D: Journal of Automobile Engineering, 2001, 215(2): 241-258. doi: 10.1243/0954407011525610
    [5] BOZCA M. Torsional vibration model based optimization of gearbox geometric design parameters to reduce rattle noise in an automotive transmission[J]. Mechanism and Machine Theory, 2010, 45(11): 1583-1598. doi: 10.1016/j.mechmachtheory.2010.06.014
    [6] BOZCA M. Empirical model based optimization of gear box geometric design parameters to reduce rattle noise in an automotive transmission[J]. Mechanism and Machine Theory, 2010, 45(11): 1599-1612. doi: 10.1016/j.mechmachtheory.2010.06.013
    [7] 张锁怀, 沈允文, 董海军, 等. 转速和不平衡质量对齿轮拍击振动的影响[J]. 航空动力学报, 2003(1): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200301027.htm

    ZHANG Suohuai, SHEN Yunwen, DONG Haijun, et al. The influence of speed and mass unbalanceon dynamic characteristics of a gear-rattling system[J]. Journal of Aerospace Power, 2003(1): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200301027.htm
    [8] 吴虎威, 吴光强. 机械变速器齿轮敲击现象建模及其影响因素[J]. 同济大学学报, 2016, 44(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201601020.htm

    WU Huwei, WU Guangqiang. Modelling of manual transmission gear rattle phenomenon and its impact factors[J]. Journal of Tongji University, 2016, 44(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201601020.htm
    [9] THEODOSSIADES S, TANGASAWI O, RAHNEJAT H. Gear teeth impacts in hydrodynamic conjunctions promoting idle gear rattle[J]. Journal of Sound and Vibration, 2007, 303(3-5): 632-658. doi: 10.1016/j.jsv.2007.01.034
    [10] BRANCATI R, ROCCA E, RUSSO R. An analysis of the automotive driveline dynamic behaviour focusing on the influence of the oil squeeze effect on the idle rattle phenomenon[J]. Journal of Sound and Vibration, 2007, 303(3-5): 858-872. doi: 10.1016/j.jsv.2007.02.008
    [11] CRUZ M, THEODOSSIADES S, KING P, et al. Transmission drive rattle with thermo-elastohydro- dynamic impacts: numerical and experimental investigations[J]. International Journal of Powertrains, 2011, 1(2): 137-161. doi: 10.1504/IJPT.2011.042764
    [12] WEI Z, SHANGGUAN W B, LIU X, et al. Modeling and analysis of friction clutches with three stages stiffness and damping for reducing gear rattles of unloaded gears at transmission[J]. Journal of Sound and Vibration, 2020, 483: 115469. doi: 10.1016/j.jsv.2020.115469
    [13] 刘雪莱, 上官文斌, 侯秋丰, 等. 基于解决变速箱怠速敲齿的摩擦离合器传动系统的建模与分析方法[J]. 机械工程学报, 2017, 53(4): 85-96. doi: 10.3901/JME.2017.04.085

    LIU Xuelai, SHANGGUAN Wenbin, HOU Qiufeng, et al. Modeling and analysis method of automotive driveline transmission system for reducing gear rattle[J]. Journal of Mechanical Engineering, 2017, 53(4): 85-96. doi: 10.3901/JME.2017.04.085
    [14] CHEN M, WANG D, LEE H, et al. Application of CAE in design optimization of a wet dual cutch transmission and driveline[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2014, 7(3): 1128-1137. doi: 10.4271/2014-01-1755
    [15] 张志军, 李宏成, 杨宪武, 等. 基于多级减振的双离合变速器敲击分析[C]//2013中国汽车工程学会年会论文集精选, 2013: 314-318.

    ZHANG Zhijun, LI Hongcheng, YANG Xianwu, et al. Gear rattle analysis of dual-clutch transmission based on multi-stiffness damper[C]//2013 SAE-CHINA Congress Selected Papers, 2013: 314-318.
    [16] 马安康, 顾灿松, 袁兆成, 等. 双离合变速器齿轮敲击的试验研究[J]. 汽车技术, 2018, 4(4): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS201804004.htm

    MA Ankang, GU Cansong, YUAN Zhaocheng, et al. Experimental Analysis of Gear Rattle in Dual Clutch Transmission[J]. Automobile Technology, 2018, 4(4): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS201804004.htm
    [17] WAN Z, CAO H, ZI Y, et al. An improved time-varying mesh stiffness algorithm and dynamic modeling of gear-rotor system with tooth root crack[J]. Engineering Failure Analysis, 2014, 42: 157-177.
    [18] WAN Z, CAO H, ZI Y, et al. Mesh stiffness calculation using an accumulated integral potential energy method and dynamic analysis of helical gears[J]. Mechanism and Machine Theory, 2015, 92: 447-463.
    [19] CHEN Z, ZHOU Z, ZHAI W, et al. Improved analytical calculation model of spur gear mesh excitations with tooth profile deviations[J]. Mechanism and Machine Theory, 2020, 149: 103838.
    [20] SAINSOT P, VELEX P. Contribution of gear body to tooth deflections: A new bidimensional analytical formula[J]. Journal of Mechanical Design, 2004, 126(4): 748-752.
    [21] FERNANDEZ A, DIEZ A, IGLESIAS M, et al. Gear rattle dynamics: Lubricant force formulation analysis on stationary conditions[J]. Mechanism and Machine Theory, 2019, 142: 103581.
    [22] DIEZ A, FERNANDEZ A, GARCIA P, et al. Gear rattle dynamics under non-stationary conditions: The lubricant role[J]. Mechanism and Machine Theory, 2020, 151: 103929.
    [23] GUO D, CHEN F, LIU J, et al. Numerical modeling of churning power loss of gear system based on moving particle method[J]. Tribology Transactions, 2020, 63(1): 182-193.
    [24] 郭栋, 陈芳超, 刘骄, 等. 齿轮副高速搅油阻力矩理论计算与试验研究[J]. 机械工程学报, 2021, 57(1): 49-60. doi: 10.3901/JME.2021.01.049

    GUO Dong, CHEN Fangchao, LIU Jiao, et al. Theoretical and experimental study of oil churning resistance torque of high-speed gear pair[J]. Journal of Mechanical Engineering, 2021, 57(1): 49-60. doi: 10.3901/JME.2021.01.049
    [25] IQBAL S, AL-BENDER F, PLUYMERS B, et al. Mathematical model and experimental evaluation of drag torque in disengaged wet clutches[J]. ISRN Tribology, 2013, 2013(12): 206539.
    [26] IQBAL S, AL-BENDER F, PLUYMERS B, et al. Model for predicting drag torque in open multi-disks wet clutches[J]. Journal of Fluids Engineering, 2014, 136(2): 021103.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 修回日期:  2022-10-03
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回