留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合双注意力机制EfficientNet的沥青路面状态分类方法

杨炜 黄立红 屈晓磊

杨炜, 黄立红, 屈晓磊. 融合双注意力机制EfficientNet的沥青路面状态分类方法[J]. 机械工程学报, 2022, 58(24): 211-222. doi: 10.3901/JME.2022.24.211
引用本文: 杨炜, 黄立红, 屈晓磊. 融合双注意力机制EfficientNet的沥青路面状态分类方法[J]. 机械工程学报, 2022, 58(24): 211-222. doi: 10.3901/JME.2022.24.211
YANG Wei, HUANG Lihong, QU Xiaolei. Dual Attention Network for the Classification of Road Surface Conditions Based on EfficientNet[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 211-222. doi: 10.3901/JME.2022.24.211
Citation: YANG Wei, HUANG Lihong, QU Xiaolei. Dual Attention Network for the Classification of Road Surface Conditions Based on EfficientNet[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 211-222. doi: 10.3901/JME.2022.24.211

融合双注意力机制EfficientNet的沥青路面状态分类方法

doi: 10.3901/JME.2022.24.211
基金项目: 

国家重点研发计划 2018YFC0807502

陕西省自然科学基金青年 2017JQ6045

详细信息
    作者简介:

    杨炜, 男, 1985年出生, 博士, 讲师, 硕士研究生导师。主要研究方向为汽车主动安全技术, 智能网联汽车。E-mail: yw@chd.edu.cn

    通讯作者:

    屈晓磊(通信作者), 男, 1984年出生, 博士, 副教授, 硕士研究生导师。主要研究方向为超声成像, 图像处理和分析。E-mail: quxiaolei@buaa.edu.cn

  • 中图分类号: TG156

Dual Attention Network for the Classification of Road Surface Conditions Based on EfficientNet

  • 摘要: 针对现有EfficientNet模型应用于沥青路面状态分类时,卷积操作易导致高层特征信息丢失问题,在现有EfficientNet模型的深层结构中引入一种双注意力机制,包含通道注意力模块和位置注意力模块,借助Sigmoid线性单元(Sigmoid linear unit,SiLU)激活函数和余弦学习率衰减策略,提出一种融合双注意力机制EfficientNet(Dual attention network based on EfficientNet,DAEfficientNet)的沥青路面状态分类方法。首先,建立不同天气下5种沥青路面共5 938张图像作为数据集,积雪样本来自开源数据集(Canadian adverse driving conditions dataset,CADCD)。然后,对所提出模型进行训练,并得到沥青路面图像分类结果。最后,利用准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 score和特异度(Specificity),将所提出模型与其他现有卷积神经网络模型进行分类效果对比分析。试验结果表明:所提出模型优于其他对比模型,能准确、有效地对不同天气下的沥青路面状态进行分类。

     

    针对现有EfficientNet模型应用于沥青路面状态分类时,卷积操作易导致高层特征信息丢失问题,在现有EfficientNet模型的深层结构中引入一种双注意力机制,包含通道注意力模块和位置注意力模块,借助Sigmoid线性单元(Sigmoid linear unit, SiLU)激活函数和余弦学习率衰减策略,提出一种融合双注意力机制EfficientNet(Dual attention network based on EfficientNet, DAEfficientNet)的沥青路面状态分类方法。首先,建立不同天气下5种沥青路面共5 938张图像作为数据集,积雪样本来自开源数据集(Canadian adverse driving conditions dataset, CADCD)。然后,对所提出模型进行训练,并得到沥青路面图像分类结果。最后,利用准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 score和特异度(Specificity),将所提出模型与其他现有卷积神经网络模型进行分类效果对比分析。试验结果表明:所提出模型优于其他对比模型,能准确、有效地对不同天气下的沥青路面状态进行分类。
  • 图  DAEfficientNet结构组成

    图  MBConv结构组成

    图  双注意力机制结构组成

    图  激活函数

    图  余弦衰减策略下的学习率变化曲线

    图  各类别样本

    图  各模型损失值、分类准确率与训练轮次关系曲线

    图  训练耗时与模型参数量曲线

    图  各样本对应DAEfficientNet不同网络层的特征图

    图  10  各模型对测试集的分类混淆矩阵

    图  11  多评价指标下各模型对测试集的分类效果

    图  12  各模型对测试集的计算耗时

    表  1  试验数据集分布

    数据集 类别
    干燥 微湿 潮湿 积水 积雪 总数
    训练集/张 584 510 1 080 955 1 150 4 279
    验证集/张 146 127 270 238 287 1 068
    测试集/张 81 70 149 132 159 591
    总数/张 811 707 1 499 1 325 1 596 5 938
    下载: 导出CSV

    表  2  各模型对测试集的总体分类性能

    模型 指标
    准确率 精确率 召回率 F1 score 特异度
    VGG-16 0.956 0 0.954 0 0.943 8 0.948 3 0.988 8
    GoogLeNet 0.950 9 0.954 2 0.942 2 0.947 4 0.987 3
    ResNet-34 0.961 1 0.964 6 0.949 2 0.955 7 0.989 9
    ResNet-50 0.961 1 0.960 0 0.951 3 0.954 8 0.990 1
    MobileNet-V2 0.940 8 0.936 8 0.930 7 0.933 4 0.984 9
    ShuffleNet-V2 0.962 8 0.965 6 0.952 0 0.957 8 0.990 3
    EfficientNet 0.969 5 0.969 0 0.960 2 0.964 0 0.992 2
    DAEfficientNet 0.983 1 0.982 5 0.977 5 0.979 8 0.995 7
    下载: 导出CSV
  • [1] 周海超, 梁晨, 杨建, 等. 提升轮胎抗滑水性能的仿生方法[J]. 机械工程学报, 2015, 51(8): 125-130. doi: 10.3901/JME.2015.08.125

    ZHOU Haichao, LIANG Chen, YANG Jian, et al. Bionic method for improving tire anti-hydroplaning performance[J]. Journal of Mechanical Engineering, 2015, 51(8): 125-130. doi: 10.3901/JME.2015.08.125
    [2] 周海超, 王国林, 姜震, 等. 湿滑状态下轮胎路面摩擦特性的数值分析方法[J]. 机械工程学报, 2020, 56(21): 190-198. doi: 10.3901/JME.2020.21.177

    ZHOU Haichao, WANG Guolin, JIANG Zhen, et al. Numerical analysis method for friction characteristics of tire-pavement[J]. Journal of Mechanical Engineering, 2020, 56(21): 190-198. doi: 10.3901/JME.2020.21.177
    [3] MORSY S, SHAKER A, EL-RABBANY A. Multispectral LiDAR data for land cover classification of urban areas[J]. Sensors, 2017, 17(5): 958. doi: 10.3390/s17050958
    [4] AKI M, ROJANAARPA T, NAKANO K, et al. Road surface recognition using laser radar for automatic platooning[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2800-2810. doi: 10.1109/TITS.2016.2528892
    [5] SHIN J, PARK H, KIM T. Characteristics of laser backscattering intensity to detect frozen and wet surfaces on roads[J]. Journal of Sensors, 2019, 2019(1): 1-9.
    [6] BYSTROV A, HOARE E, TRAN T, et al. Sensors for automotive remote road surface classification[C]//2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Sep. 12-14, 2018, Madrid, Spain. IEEE, 2018.
    [7] NAKASHIMA S, ARAMAKI S, KITAZONO Y, et al. Application of ultrasonic sensors in road surface condition distinction methods[J]. Sensors, 2016, 16(10): 1678. doi: 10.3390/s16101678
    [8] KALLIRIS M, KANARACHOS S, KOTSAKIS R, et al. Machine learning algorithms for wet road surface detection using acoustic measurements[C]//Proceedings of the 2019 IEEE International Conference on Mechatronics (ICM), Mar. 18-20, 2019, Ilmenau University of Technology, Ilmenau, Germany. IEEE, 2019: 265-270.
    [9] 卢俊辉, 王建强, 李克强, 等. 基于路面温度和太阳辐射强度的路面状态识别方法[J]. 农业机械学报, 2010, 41(5): 21-23. doi: 10.3969/j.issn.1000-1298.2010.05.005

    LU Junhui, WANG Jianqiang, LI Keqiang, et al. Road condition detection based on road temperature and solar radiation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(5): 21-23. doi: 10.3969/j.issn.1000-1298.2010.05.005
    [10] SHINMOTO Y, TAKAGI J, EGAWA K, et al. Road surface recognition sensor using an optical spatial filter[C]//Proceedings of the 1997 IEEE Conference on Intelligent Transportation Systems(ITSC 997), Nov. 09-12, 1997, Boston, Massachusetts, USA. 1997: 1000-1004.
    [11] YAMADA M, UEDA K, HORIBA I, et al. A study of the road surface condition detection technique for deployment on a vehicle[J]. Transactions of the Institute of Electrical Engineers of Japan, 2004, 124(3): 753-760.
    [12] JOKELA M, KUTILA M, LE L. Road condition monitoring system based on a stereo camera[C]//Proceedings of the IEEE 5th International Conference on Intelligent Computer Communication and Processing, Aug. 27-29, 2009, Cluj Napoca, Romania. 2009: 423-428.
    [13] 顾昊, 李勃, 张潇, 等. 基于偏振测量的路面积水积冰检测方法[J]. 电子测量技术, 2011, 34(7): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201107026.htm

    GU Hao, LI Bo, ZHANG Xiao, et al. Detection of road surface water and ice based on polarization measurement[J]. Electronic Measurement Technology, 2011, 34(7): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201107026.htm
    [14] COLACE L, SANTONI F, ASSANTO G. A near-infrared optoelectronic approach to detection of road conditions[J]. Optics and Lasers in Engineering, 2013, 51(5): 633-636. doi: 10.1016/j.optlaseng.2013.01.003
    [15] COLACE L, SANTONI F, ASSANTO G. Optical road-ice detector operating in the near infrared[J]. Electronics Letters, 2013, 49(5): 338-339. doi: 10.1049/el.2012.3704
    [16] JONSSON P, CASSELGREN J, THORNBERG B. Road surface status classification using spectral analysis of NIR camera images[J]. IEEE Sensors Journal, 2015, 15(3): 1641-1656. doi: 10.1109/JSEN.2014.2364854
    [17] AMTHOR M, HARTMANN B, DENZLER J. Road condition estimation based on spatio-temporal reflection models[C]//Proceedings of the 37th German Conference on Pattern Recognition (GCPR), Oct. 07-10, 2015, Aachen, Germany. 2015: 3-15.
    [18] 苑会珍, 葛俊锋, 叶林, 等. 基于线偏振度的非接触式路面状态探测方法[J]. 仪表技术与传感器, 2017(8): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201708023.htm

    YUAN Huizhen, GE Junfeng, YE Lin, et al. Noncontact road condition detection method based on degree of linear polarization[J]. Instrument Technique and Sensor, 2017 (8): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201708023.htm
    [19] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [20] LIU Weibo, WANG Zidong, LIU Xiaohui, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26.
    [21] YANG H, JANG H, JEONG D. Detection algorithm for road surface condition using wavelet packet transform and SVM[C]//Proceedings of the 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV 2013), Jan. 30-Feb. 01, 2013, Inha Univ, Incheon, South Korea. 2013: 323-326.
    [22] 万剑, 赵恺, 王维锋. 基于高维特征和RBP神经网络的湿滑道路图像判别方法[J]. 交通信息与安全, 2013, 31(2): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201302010.htm

    WAN Jian, ZHAO Kai, WANG Weifeng. Classification of slippery road images based on high-dimensional features and RBP neural network[J]. Journal of Transport Information and Safety, 2013, 31(2): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201302010.htm
    [23] ZHAO J, WU H, CHEN L. Road surface state recognition based on SVM optimization and image segmentation processing[J]. Journal of Advanced Transportation, 2017, 2017: 1-21.
    [24] HAN X, NGUYEN C, YOU S, et al. Single image water hazard detection using FCN with reflection attention units[C]//15th European Conference on Computer Vision (ECCV). Lecture Notes in Computer Science (LNCS), Sept. 08-14, 2018, Munich, Germany. ECCV, 2018: 105-21.
    [25] NOLTE M, KISTER N, MAURER M. Assessment of deep convolutional neural networks for road surface classification[C]//21st IEEE International Conference on Intelligent Transportation Systems (ITSC), Nov. 04-07, 2018, Maui, Hawaii, USA. IEEE, 2018: 381-386.
    [26] PAN G, FU L, YU R, et al. Winter road surface condition recognition using a pretrained deep convolutional network[C]//Transporation Research Board 97th Annual Metting, Jan. 07-11, 2018, Washington DC, USA. 2018: 18-00838.
    [27] PAN G, MURESAN M, YU R, et al. Real-time winter road surface condition monitoring using an improved residual CNN[J]. Canadian Journal of Civil Engineering, 2020.
    [28] DEWANGAN D K, SAHU S. RCNet: Road classification convolutional neural networks for intelligent vehicle system[J]. Intelligent Service Robotics, 2021, 2021: 1-16.
    [29] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//15th European Conference on Computer Vision (ECCV). Lecture Notes in Computer Science (LNCS), Sept. 08-14, 2018, Munich, Germany. ECCV, 2018: 3-19.
    [30] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[J]. 2019, arXiv: 1905.11946.
    [31] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 16-20, 2019, long Beach, California, USA. 2019: 3141-3149.
    [32] RAMACHANDRAN P, ZOPH B, LE Q. Searching for activation functions[J]. 2017, arXiv: 1710.05941.
    [33] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107(SI): 3-11.
    [34] HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]//32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 16-20, 2019, Long Beach, California, USA. 2019: 558-567.
    [35] LOSHCHILOV I, HUTTER F. SGDR: Stochastic gradient descent with warm restarts[C/CD]//5th International Conference on Learning Representations (ICLR 2017), Apr. 24-26, 2017, Toulon, France. 2017.
    [36] PITROPOV M, GARCIA D, REBELLO J, et al. Canadian adverse driving conditions dataset[J]. 2020, arXiv: 2001.10117.
    [37] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. 2014, arXiv: 1409.1556.
    [38] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 07-12, 2015, Boston, Massachusetts, USA. 2015: 1-9.
    [39] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 27-30, 2016, Seattle, Washington, USA. 2015: 770-778.
    [40] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 18-23, 2018, Salt Lake City, Utah, USA. 2018: 4510-4520.
    [41] MA N, ZHANG X, ZHENG H, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//15th European Conference on Computer Vision (ECCV). Lecture Notes in Computer Science (LNCS), Sept. 08-14, 2018, Munich, Germany. ECCV, 2018: 122-138.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-01
  • 修回日期:  2022-07-05
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回