留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于鲁棒积分滑模的四轮轮毂电机驱动电动汽车电液复合制动防抱死控制研究

张雷 刘青松 王震坡

张雷, 刘青松, 王震坡. 基于鲁棒积分滑模的四轮轮毂电机驱动电动汽车电液复合制动防抱死控制研究[J]. 机械工程学报, 2022, 58(24): 243-252. doi: 10.3901/JME.2022.24.243
引用本文: 张雷, 刘青松, 王震坡. 基于鲁棒积分滑模的四轮轮毂电机驱动电动汽车电液复合制动防抱死控制研究[J]. 机械工程学报, 2022, 58(24): 243-252. doi: 10.3901/JME.2022.24.243
ZHANG Lei, LIU Qingsong, WANG Zhenpo. Research on Electro-hydraulic Composite ABS Control for Four-wheel-independent-drive Electric Vehicles Based on Robust Integral Sliding Mode Control[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 243-252. doi: 10.3901/JME.2022.24.243
Citation: ZHANG Lei, LIU Qingsong, WANG Zhenpo. Research on Electro-hydraulic Composite ABS Control for Four-wheel-independent-drive Electric Vehicles Based on Robust Integral Sliding Mode Control[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 243-252. doi: 10.3901/JME.2022.24.243

基于鲁棒积分滑模的四轮轮毂电机驱动电动汽车电液复合制动防抱死控制研究

doi: 10.3901/JME.2022.24.243
基金项目: 

国家重点研发计划资助项目 2017YFB0103600

详细信息
    作者简介:

    张雷,男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为智能网联新能源汽车整车动力学控制及储能系统管理技术等。E-mail:lei_zhang@bit.edu.cn

    刘青松,男,1995年出生,硕士研究生。主要研究方向为分布式驱动电动汽车动力学控制。E-mail:kg609521490@163.com

    通讯作者:

    王震坡(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为电动汽车动力学理论与控制以及车用锂离子动力电池成组理论与技术。E-mail:wangzhenpo@bit.edu.cn

  • 中图分类号: TG156

Research on Electro-hydraulic Composite ABS Control for Four-wheel-independent-drive Electric Vehicles Based on Robust Integral Sliding Mode Control

  • 摘要: 为了充分发挥四轮轮毂电机驱动电动汽车电机制动与液压摩擦制动响应快且独立可控的优势,提高紧急制动时车辆稳定性与安全性,提出一种基于鲁棒积分滑模的电液复合制动防抱死控制策略。采用分层控制架构,上层控制器为基于鲁棒积分滑模的车轮滑移率控制,下层控制器为电液复合制动力协调分配。建立整车动力学与电液复合制动系统模型,基于Simulink-AMESim-Carsim联合仿真平台,在四种典型制动工况下对上述电液复合制动防抱死控制策略进行仿真验证。结果表明,在无需实时获取路面附着系数与轮胎纵向力的情况下,所提出的控制策略仍能消除外界干扰使车轮滑移率收敛至期望值,适用于多种紧急制动工况,响应迅速且鲁棒性强;电机再生制动与液压摩擦制动可稳定协同工作,在保证制动可靠性的同时提升了乘坐舒适性。

     

    为了充分发挥四轮轮毂电机驱动电动汽车电机制动与液压摩擦制动响应快且独立可控的优势,提高紧急制动时车辆稳定性与安全性,提出一种基于鲁棒积分滑模的电液复合制动防抱死控制策略。采用分层控制架构,上层控制器为基于鲁棒积分滑模的车轮滑移率控制,下层控制器为电液复合制动力协调分配。建立整车动力学与电液复合制动系统模型,基于Simulink-AMESim-Carsim联合仿真平台,在四种典型制动工况下对上述电液复合制动防抱死控制策略进行了仿真验证。结果表明,在无需实时获取路面附着系数与轮胎纵向力的情况下,所提出的控制策略仍能消除外界干扰使车轮滑移率收敛至期望值,适用于多种紧急制动工况,响应迅速且鲁棒性强;电机再生制动与液压摩擦制动可稳定协同工作,在保证制动可靠性的同时提升了乘坐舒适性。
  • 图  四轮轮毂电机驱动电动汽车电液复合制动系统

    图  电液复合ABS控制框图

    图  整车纵向动力学模型

    图  电子液压制动系统结构

    图  制动强度正弦输入下的轮缸压力响应

    图  不同路面利用附着系数与滑移率关系

    图  轮胎纵向力与滑移率之间的关系

    图  制动模式切换逻辑

    图  10  电、液制动力矩分配规则

    图  11  低附路面工况设定

    图  12  低附路面ABS控制效果

    图  13  高附路面工况设定

    图  14  高附路面ABS控制效果

    图  15  对接路面工况设定

    图  16  对接路面ABS控制效果

    图  17  对开路面工况设定

    图  18  对开路面ABS控制效果

    表  1  轮毂电机参数

    参数 数值
    电机基速n0 / (r/min) 700
    电机峰值功率Pm / kW 23.5
    电机峰值转矩Tm / (N·m) 320
    低速临界转速n1 / (r/min) 100
    电机响应时间常数τ / s 0.02
    下载: 导出CSV

    表  2  车辆及实验相关参数

    参数 数值
    整备质量m / kg 1 740
    轴距l / mm 2 500
    质心到前轴距离a / mm 1 150
    质心到后轴距离b / mm 1 350
    质心高度h / mm 500
    车轮转动惯量J / (kg·m2) 1.67
    ABS退出车速vlim / (km/h) 15
    滑模积分常数c 6
    滑模趋近率系数ε 0.5
    滑模趋近率系数k 24
    RISMC退出下限偏差$\varpi $ 0.05
    RISMC触发上限偏差δ 0.15
    下载: 导出CSV
  • [1] 王震坡, 丁晓林, 张雷. 四轮轮毂电机驱动电动汽车驱动防滑控制关键技术综述[J]. 机械工程学报, 2019, 55(12): 99-120. doi: 10.3901/JME.2019.12.099

    WANG Zhenpo, DING Xiaolin, ZHANG Lei. Overview on key technologies of acceleration slip regulation for four-wheel independently actuated electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(12): 99-120. doi: 10.3901/JME.2019.12.099
    [2] WANG Zhenpo, ZHU Junjun, ZHANG Lei, et al. Automotive ABS/DYC coordinated control under complex driving conditions[J]. IEEE Access, 2018, 2018(6): 32769-32779.
    [3] XU Wei, CHEN Hong, ZHAO Haiyan, et al. Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system[J]. Mechatronics, 2019, 57: 95-108. doi: 10.1016/j.mechatronics.2018.11.006
    [4] SAVITSKI D, IVANOV V, SHYROKAU B, et al. Experimental investigations on continuous regenerative anti-lock braking system of full electric vehicle[J]. International Journal of Automotive Technology, 2016, 17(2): 327-338. doi: 10.1007/s12239-016-0033-x
    [5] WANG Bing, HUANG Xiaoyu, WANG Junmin, et al. A robust wheel slip ratio control design combining hydraulic and regenerative braking systems for in-wheel-motors-driven electric vehicles[J]. Journal of the Franklin Institute, 2015, 352(2): 577-602. doi: 10.1016/j.jfranklin.2014.06.004
    [6] PENG D, ZHANG Y, YIN C, et al. Combined control of a regenerative braking and antilock braking system for hybrid electric vehicles[J]. International Journal of Automotive Technology, 2008, 9(6): 749-757. doi: 10.1007/s12239-008-0089-3
    [7] 孙大许, 兰凤崇, 何幸福, 等. 双电机四驱电动汽车自适应复合防抱死控制[J]. 吉林大学学报, 2016, 46(5): 1405-1413. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201605004.htm

    SUN Daxu, LAN Fengchong, HE Xingfu, et al. Self-adaptive composite ABS of dual-motor four-wheel drive electric vehicle[J]. Journal of Jilin University, 2016, 46(5): 1405-1413. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201605004.htm
    [8] ZHANG Xiangwen, XU Yong, PAN Ming, et al. A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tire/road friction coefficient estimations[J]. Vehicle System Dynamics, 2014, 52(4): 475-503. doi: 10.1080/00423114.2013.864775
    [9] 潘劲, 潘浩, 裴晓飞, 等. 分布式驱动电动汽车电液复合ABS控制研究[J]. 汽车技术, 2019, 2019(11): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS201911003.htm

    PAN Jin, PAN Hao, PEI Xiaofei, et al. Research on electro-hydraulic composite ABS control for distributed driving EV[J]. Automotive Technology, 2019, 2019(11): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS201911003.htm
    [10] ZHANG Zhongshi, MA Ruihai, WANG Lifang, et al. Novel PMSM control for anti-lock braking considering transmission properties of the electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10378-10386. doi: 10.1109/TVT.2018.2866828
    [11] ZHAI Li, SUN Tianmin, WANG Jie. Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4726-4739. doi: 10.1109/TVT.2016.2526663
    [12] 王骏骋, 何仁. 电动车辆ABS的改进线性二次型最优控制[J]. 哈尔滨工业大学学报, 2018, 50(9): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201809017.htm

    WANG Juncheng, HE Ren. Improved linear quadratic optimal control of ABS for an electric vehicle[J]. Journal of Harbin Institute of Technology, 2018, 50(9): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201809017.htm
    [13] 严运兵, 吴浩, 赵慧. 汽车防抱死制动系统的H∞鲁棒控制[J]. 汽车工程, 2014, 36(4): 453-458. doi: 10.3969/j.issn.1000-680X.2014.04.013

    YAN Yunbing, WU Hao, ZHAO Hui. H robust control of vehicle anti-lock braking system[J]. Automotive Engineering, 2014, 36(4): 453-458. doi: 10.3969/j.issn.1000-680X.2014.04.013
    [14] HUANG Xiaoyu, WANG Junmin. Model predictive regenerative braking control for lightweight electric vehicles with in-wheel motors[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2012, 226(9): 1220-1232. doi: 10.1177/0954407012440934
    [15] 陈志成, 赵健, 朱冰, 等. 基于电控助力制动级联制动防抱死控制策略[J]. 汽车工程, 2019, 41(11): 1320-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201911015.htm

    CHEN Zhicheng, ZHAO Jian, ZHU Bing, et al. Cascaded anti-lock brake control strategy based on electro-booster brake[J]. Automotive Engineering, 2019, 41(11): 1320-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201911015.htm
    [16] 赵治国, 张军腾, 吴枭威, 等. 基于ABS的四驱HEV串联式电液复合制动控制[J]. 中国公路学报, 2015, 28(11): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201511018.htm

    ZHAO Zhiguo, ZHANG Junteng, WU Xiaowei, et al. Electro-hydraulic series compound braking control for 4WD HEV using ABS[J]. China Journal of Highway and Transport, 2015, 28(11): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201511018.htm
    [17] 余卓平, 韩伟, 徐松云, 等. 电子液压制动系统液压力控制发展现状综述[J]. 机械工程学报, 2017, 53(14): 1-15. doi: 10.3901/JME.2017.14.001

    YU Zhuoping, HAN Wei, XU Songyun, et al. Review on hydraulic pressure control of electro-hydraulic brake system[J]. Journal of Mechanical Engineering, 2017, 53(14): 1-15. doi: 10.3901/JME.2017.14.001
    [18] DING Xiaolin, WANG Zhenpo, ZHANG Lei, et al. Longitudinal vehicle speed estimation for four-wheel-independently-actuated electric vehicles based on multi-sensor fusion[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12797-12806.
    [19] 熊璐, 韩伟, 余卓平, 等. 考虑关键非线性特征的集成式电子液压制动系统主缸液压力精确控制[J]. 机械工程学报, 2019, 55(24): 117-126. doi: 10.3901/JME.2019.24.117

    XIONG Lu, HAN Wei, YU Zhuoping, et al. Pressure precisely control of master cylinder on integrated-electro hydraulic brake system considering the critical nonlinear characteristics[J]. Journal of Mechanical Engineering, 2019, 55(24): 117-126. doi: 10.3901/JME.2019.24.117
    [20] 赵国柱, 滕建辉, 魏民祥, 等. 基于模糊控制的电动汽车低速再生ABS研究[J]. 中国机械工程, 2012, 23(1): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201201027.htm

    ZHAO Guozhu, TENG Jianhui, WEI Minxiang, et al. Study on low-speed rengenerative braking of electric vehicle as ABS based on fuzzy control[J]. China Mechanical Engineering, 2012, 23(1): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201201027.htm
    [21] MOAVENI B, ABAD R K M, NASIRI S. Vehicle longitudinal velocity estimation during the braking process using unknown input Kalman filter[J]. Vehicle System Dynamics, 2015, 53(10): 1373-1392.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-20
  • 修回日期:  2022-07-25
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回