留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据驱动的电池系统泛化SOH估计方法

车云弘 邓忠伟 李佳承 谢翌 胡晓松

车云弘, 邓忠伟, 李佳承, 谢翌, 胡晓松. 基于数据驱动的电池系统泛化SOH估计方法[J]. 机械工程学报, 2022, 58(24): 253-263. doi: 10.3901/JME.2022.24.253
引用本文: 车云弘, 邓忠伟, 李佳承, 谢翌, 胡晓松. 基于数据驱动的电池系统泛化SOH估计方法[J]. 机械工程学报, 2022, 58(24): 253-263. doi: 10.3901/JME.2022.24.253
CHE Yunhong, DENG Zhongwei, LI Jiacheng, XIE Yi, HU Xiaosong. Generalized Data-driven SOH Estimation Method for Battery Systems[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 253-263. doi: 10.3901/JME.2022.24.253
Citation: CHE Yunhong, DENG Zhongwei, LI Jiacheng, XIE Yi, HU Xiaosong. Generalized Data-driven SOH Estimation Method for Battery Systems[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 253-263. doi: 10.3901/JME.2022.24.253

基于数据驱动的电池系统泛化SOH估计方法

doi: 10.3901/JME.2022.24.253
基金项目: 

国家重点研发计划 2022YFE0102700

国家自然科学基金 52111530194

重庆市英才计划 cstc2021ycjh-bgzxm0295

广东省重点领域研发计划 2020B0909030001

详细信息
    作者简介:

    车云弘,男,1996年出生。主要研究方向为电池状态估计及寿命预测。E-mail:yunhongche@126.com

    通讯作者:

    谢翌(通信作者),男,1983年出生,博士,副教授,博士研究生导师。主要研究方向为电动汽车电池管理技术。E-mail:claudexie@cqu.edu.cn

  • 中图分类号: TM912

Generalized Data-driven SOH Estimation Method for Battery Systems

  • 摘要: 准确可靠的电池健康状态估计是保证锂离子电池安全运行的关键,同时为失效预警提供参考。提出一种适用于电池单体和电池组的健康状态估计通用方法。首先,提出基于局部充放电数据的电池单体高效健康因子提取方法,保证健康因子和容量的高相关性和实现健康因子的在线可获取性。其次,提出考虑电池组容量衰减和不一致性的特征生成策略,利用主成分分析获取融合特征,利用双时间尺度滤波和电池组等效电路模型拓宽特征提取方法的应用范围。然后,基于高斯过程回归算法框架,考虑健康因子和容量衰减的整体关系和局部变化提出改进的高斯核函数提高估计精度和可靠性。最后,利用多个试验数据集验证算法在不同应用条件下的泛化能力。估计结果表明,对恒流放电工况的电池单体估计误差小于1.28%,在动态变温条件下电池单体估计误差小于1.82%;串联电池组的验证结果表明在各种应用场景下估计误差均小于1.43%。提高了电池系统健康状态估计的精度以及在广泛应用场景下的适应性。

     

    准确可靠的电池健康状态估计是保证锂离子电池安全运行的关键,同时为失效预警提供参考。提出一种适用于电池单体和电池组的健康状态估计通用方法。首先,提出基于局部充放电数据的电池单体高效健康因子提取方法,保证健康因子和容量的高相关性和实现健康因子的在线可获取性。其次,提出考虑电池组容量衰减和不一致性的特征生成策略,利用主成分分析获取融合特征,利用双时间尺度滤波和电池组等效电路模型拓宽特征提取方法的应用范围。然后,基于高斯过程回归算法框架,考虑健康因子和容量衰减的整体关系和局部变化提出改进的高斯核函数提高估计精度和可靠性。最后,利用多个试验数据集验证算法在不同应用条件下的泛化能力。估计结果表明,对恒流放电工况的电池单体估计误差小于1.28%,在动态变温条件下电池单体估计误差小于1.82%;串联电池组的验证结果表明在各种应用场景下估计误差均小于1.43%。提高了电池系统健康状态估计的精度以及在广泛应用场景下的适应性。
  • 图  动态老化工况电压响应

    图  公开数据集169个电池容量及HIs衰减曲线

    图  B1-B3电池估计结果及误差

    图  B4-B6电池估计结果及误差

    图  C1~C4电池估计结果及误差

    图  Pack#1~Pack#4电池估计结果及误差

    表  1  电池组规格参数及测试条件

    明细 Pack#1 Pack#2 Pack#3 Pack#4
    电极材料 NCM/石墨 LiFePO4/石墨
    额定容量 177 A·h 100 A·h 100 A·h 100 A·h
    电压范围 2.8 V~4.2 V 2.6 V~3.6 V
    充电模式 MCC CC (0.5C)-CV (0.05C)
    放电模式 CC (1C) CC (0.5C)
    电芯数量 4 16 15 15
    容量范围/(A·h) 147.79~182.60 77.04~100.35 78.86~101.38 59.14~73.29
    环境温度 25 ℃ 35 ℃
    下载: 导出CSV

    表  2  公开数据集相关性分析统计结果

    HI 均值 > 0.9比例 > 0.95比例 > 0.98比例
    std_Q 0.968 0.982 0.899 0.361
    std_dQ 0.972 0.982 0.888 0.491
    下载: 导出CSV

    表  3  试验数据集相关性分析结果

    HI C1 C2 C3 C4
    std_Q 0.998 0.989 0.999 0.960
    std_dQ 0.996 0.993 0.998 0.938
    下载: 导出CSV

    表  4  电池组HIs和容量的相关性分析结果

    HI pack#1 pack#2 Pack#3 Pack#4
    normal dynamic
    PCA (std_Q) 0.998 0.997 0.984 0.991 0.995
    PCA (std_Q) 0.995 0.997 0.996 0.987 0.967
    下载: 导出CSV

    表  5  B1-B6电池使用不同方法的估计误差对比   %

    电池编号 组合核函数 指数核函数 线性核函数
    MAE RMSE MAE RMSE MAE RMSE
    B1 0.555 0.676 0.636 0.731 0.565 0.682
    B2 0.623 0.735 0.662 0.749 0.664 0.749
    B3 0.577 0.856 0.589 0.874 0.577 0.857
    B4 0.980 1.272 1.006 1.306 1.102 1.332
    B5 0.486 0.714 0.492 0.835 0.513 0.809
    B6 0.308 0.412 0.429 0.523 0.309 0.413
    下载: 导出CSV

    表  6  试验数据集SOH估计误差

    电池编号 MAE (%) RMSE (%)
    C1 0.801 0.908
    C2 1.040 1.140
    C3 0.357 0.454
    C4 1.427 1.811
    下载: 导出CSV

    表  7  电池组SOH不同方法的估计误差对比  %

    电池编号 组合核函数 指数核函数 线性核函数
    MAE RMSE MAE RMSE MAE RMSE
    Pack#1 0.491 0.529 0.661 0.976 0.724 1.065
    Pack#1(dynamic) 0.623 0.735 0.640 0.739 0.833 0.915
    Pack#2 0.198 0.240 0.638 0.785 0.935 1.039
    Pack#3 0.928 0.981 3.061 3.155 1.983 2.461
    Pack#4 1.275 1.425 1.529 1.698 1.503 1.740
    下载: 导出CSV
  • [1] 唐小林, 李珊珊, 王红, 等. 网联环境下基于分层式模型预测控制的车队能量控制策略研究[J]. 机械工程学报, 2020, 56(14): 119-128. doi: 10.3901/JME.2020.14.119

    TANG Xiaolin, LI Shanshan, WANG Hong, et al. Research on energy control strategy based on hierarchical model predictive control in connected environment[J]. Journal of Mechanical Engineering, 2020, 56(14): 119-128. doi: 10.3901/JME.2020.14.119
    [2] 杨瑞鑫, 熊瑞, 孙逢春. 锂离子动力电池外部短路测试平台开发与试验分析[J]. 电气工程学报, 2021, 16(1): 103-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH202101014.htm

    YANG Ruixin, XIONG Rui, SUN Fengchun. Experimental platform development and characteristics analysis of external short circuit in lithium-ion batteries[J]. Journal of Electrical Engineering, 2021, 16(1): 103-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH202101014.htm
    [3] CHE Yunhong, DENG Zhongwei, LI Penghua, et al. State of health prognostics for series battery packs: A universal deep learning method[J]. Energy, 2022, 238: 121857. doi: 10.1016/j.energy.2021.121857
    [4] 贾俊, 胡晓松, 邓忠伟, 等. 数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J]. 机械工程学报, 2021, 57(14): 141-149, 159. doi: 10.3901/JME.2021.14.141

    JIA Jun, HU Xiaosong, DENG Zhongwei, et al. Data-driven comprehensive evaluation of lithium-ion battery state of health and abnormal battery screening[J] Journal of Mechanical Engineering, 2021, 57(14): 141-149, 159. doi: 10.3901/JME.2021.14.141
    [5] HU Xiaosong, FENG Fei, LIU Kailong, et al. State estimation for advanced battery management: key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334. doi: 10.1016/j.rser.2019.109334
    [6] 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111, 325. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201901012.htm

    ZHOU Di, SONG Xianhua, LU Wenbin, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111, 325. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201901012.htm
    [7] 周子游, 刘永刚, 杨阳, 等. 考虑混杂充电数据的锂离子电池容量估计[J]. 机械工程学报, 2021, 57(14): 1-9. doi: 10.3901/JME.2021.14.001

    ZHOU Ziyou, LIU Yonggang, YANG Yang, et al. Capacity estimation of lithium-ion battery considering hybrid charging data[J] Journal of Mechanical Engineering, 2021, 57(14): 1-9. doi: 10.3901/JME.2021.14.001
    [8] HU Xiaosong, XU Le, LIN Xianke, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-46.
    [9] LYU Zhiqiang, GAO Renjing, CHEN Lin. Li-ion battery state of health estimation and remaining useful life prediction through a model-data-fusion method[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6228-6240.
    [10] HU Xiaosong, CHE Yunhong, LIN Xianke, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 382-398.
    [11] CHE Yunhong, DENG Zhongwei, LIN Xianke, et al. Predictive battery health management with transfer learning and online model correction[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1269-1277.
    [12] GOU Bin, XU Yan, FENG Xue. State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10854-10867.
    [13] WENG Caihao, FENG Xuning, SUN Jing, et al. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking[J]. Applied Energy, 2016, 180: 360-8.
    [14] 舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J]. 机械工程学报, 2021, 57(14): 118-128. doi: 10.3901/JME.2021.14.118

    SHU Xing, LIU Yonggang, SHEN Jiangwei, et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and Box-Cox transformation[J], Journal of Mechanical Engineering, 2021, 57(14): 118-128. doi: 10.3901/JME.2021.14.118
    [15] SUI Xin, HE Shan, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346.
    [16] HU Xiaosong, CHE Yunhong, LIN Xianke, et al. Health prognosis for electric vehicle battery packs: A data-driven approach[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2622-32.
    [17] SEVERSON Kristen A., ATTIA Peter M., JIN Norman, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
    [18] ATTIA Peter M, GROVER Aditya, JIN Norman, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402.
    [19] DENG Zhongwei, HU Xiaosong, LIN Xianke, et al. General discharge voltage information enabled health evaluation for lithium-ion batteries[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(3): 1295-1306.
    [20] CHE Yunhong, DENG Zhongwei, TANG Xiaolin, et al. Lifetime and aging degradation prognostics for lithium-ion battery packs based on a cell to pack method[J]. Chinese Journal of Mechanical Engineering, 2022, 35(4): 1-16.
    [21] CHE Yunhong, FOLEY Aoife, El-GINDY Moustafa, et al. Joint estimation of inconsistency and state of health for series battery packs[J]. Automotive Innovation, 2021(4): 103-116.
    [22] 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202204024.htm

    WANG Ping, FAN Lingfeng, CHENG Ze. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2021, 42(4): 1523-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202204024.htm
    [23] 高铭琨, 徐海亮, 吴明铂. 基于等效电路模型的动力电池SOC估计方法综述[J]. 电气工程学报, 2021, 16(1): 90-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH202101013.htm

    GAO Mingkun, XU Hailiang, WU Mingbo. Review of SOC estimation methods for power battery based on equivalent circuit model[J]. Journal of Electrical Engineering, 2021, 16(1): 90-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH202101013.htm
    [24] FENG Fei, HU Xiaosong, LIU Kailong, et al. A practical and comprehensive evaluation method for series-connected battery pack models[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 391-416.
    [25] HU Lin, HU Xiaosong, CHE Yunhong, et al. Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering[J]. Applied Energy, 2020, 262: 114569.
    [26] 胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16): 20-31. doi: 10.3901/JME.2017.16.020

    HU Xiaosong, TANG Xiaolin. Review of modeling techniques for lithium-ion traction batteries in electric vehicles[J] Journal of Mechanical Engineering, 2017, 53(16): 20-31. doi: 10.3901/JME.2017.16.020
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  38
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-06-25
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回