留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于线性时变模型预测控制的自主车辆轨迹跟踪控制器设计与验证

庞辉 刘楠 刘敏豪 张风奇

庞辉, 刘楠, 刘敏豪, 张风奇. 基于线性时变模型预测控制的自主车辆轨迹跟踪控制器设计与验证[J]. 机械工程学报, 2022, 58(24): 264-274. doi: 10.3901/JME.2022.24.264
引用本文: 庞辉, 刘楠, 刘敏豪, 张风奇. 基于线性时变模型预测控制的自主车辆轨迹跟踪控制器设计与验证[J]. 机械工程学报, 2022, 58(24): 264-274. doi: 10.3901/JME.2022.24.264
PANG Hui, LIU Nan, LIU Minhao, ZHANG Fengqi. Design and Validation of Trajectory Tracking Controller for Autonomous Vehicle Based on Linear Time-varying MPC Method[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 264-274. doi: 10.3901/JME.2022.24.264
Citation: PANG Hui, LIU Nan, LIU Minhao, ZHANG Fengqi. Design and Validation of Trajectory Tracking Controller for Autonomous Vehicle Based on Linear Time-varying MPC Method[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(24): 264-274. doi: 10.3901/JME.2022.24.264

基于线性时变模型预测控制的自主车辆轨迹跟踪控制器设计与验证

doi: 10.3901/JME.2022.24.264
基金项目: 

国家自然科学基金资助项目 51675423

国家自然科学基金资助项目 51905419

详细信息
    作者简介:

    刘楠,男,1996年出生,硕士研究生。主要研究方向为智能车辆路径跟踪与预测算法。E-mail:nanliu2020@163.com

    刘敏豪,男,1997年出生,硕士研究生。主要研究方向为智能无人车辆编队及避障控制方法。E-mail:18316583651@qq.com

    张风奇,男,1987年出生,博士,讲师。主要研究方向为智能网联电气化车辆节能控制、自动驾驶车辆控制。E-mail:zfqdy@126.com

    通讯作者:

    庞辉(通信作者),男,1980年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与智能控制、无人驾驶车辆智能控制方法。E-mail:panghui@xaut.edu.cn

Design and Validation of Trajectory Tracking Controller for Autonomous Vehicle Based on Linear Time-varying MPC Method

  • 摘要: 随着自动驾驶技术的快速发展,精确的轨迹跟踪已经成为汽车工业和学术领域公认的实现自主车辆运动控制的核心技术之一。为提高自主车辆轨迹跟踪的实时性与准确性,提出一种应用于自主车辆的线性时变模型预测跟踪控制器(Linear time-varying model predictive controller, LTV-MPC)设计方法。根据运动学原理建立某自主无人小车的二自由度运动学模型,其次,基于该模型构建车辆轨迹跟踪系统的误差模型并利用线性参数化理论对其进行离散化,在模型预测控制框架内将该轨迹跟踪控制器的设计转化为一个线性二次规划最优问题。在一个实际搭建的自主车辆试验平台上对所提出控制器的有效性进行不同预设参考路径轨迹下的实车验证,结果表明,该自主车辆能够对所预设的实际参考道路轨迹进行快速、准确的轨迹跟踪控制,且具有较好的行驶稳定性能。

     

    摘要:随着自动驾驶技术的快速发展,精确的轨迹跟踪已经成为汽车工业和学术领域公认的实现自主车辆运动控制的核心技术之一。为提高自主车辆轨迹跟踪的实时性与准确性,提出一种应用于自主车辆的线性时变模型预测跟踪控制器(Linear time-varying model predictive controller, LTV-MPC)设计方法。根据运动学原理建立某自主无人小车的二自由度运动学模型,其次,基于该模型构建车辆轨迹跟踪系统的误差模型并利用线性参数化理论对其进行离散化,在模型预测控制框架内将该轨迹跟踪控制器的设计转化为一个线性二次规划最优问题。在一个实际搭建的自主车辆试验平台上对所提出控制器的有效性进行不同预设参考路径轨迹下的实车验证,结果表明,该自主车辆能够对所预设的实际参考道路轨迹进行快速、准确的轨迹跟踪控制,且具有较好的行驶稳定性能。
  • 图  自主车辆二自由度运动学模型

    图  MPC控制原理框图

    图  试验系统原理图

    图  户外实车测试场景图

    图  圆形轨迹下两种控制器的跟踪响应曲线

    图  圆形轨迹下两种控制器的跟踪误差曲线

    图  圆形轨迹下两种控制器运动状态RMSE值

    图  双圆环轨迹下两种控制器的跟踪响应曲线

    图  双圆环轨迹下两种控制器的跟踪误差曲线

    图  10  双圆环轨迹下两种控制器运动状态RMSE值

    图  11  不规则轨迹下两种控制器的跟踪响应曲线

    图  12  不规则轨迹下两种控制器跟踪误差曲线

    图  13  不规则轨迹下两种控制器运动状态RMSE值

    表  1  车辆运动学模型参数

    符号 描述
    A$ ({X_{\rm{f}}}, {Y_{\rm{f}}}) $ 前轴轴心
    B$ ({X_{\rm{r}}}, {Y_{\rm{r}}}) $ 后轴轴心
    $ \varphi $ 车身横摆角
    $ {v_{\rm{r}}} $ 后轮速度
    $ l $ 轴距
    $ {\delta _{\rm{f}}} $ 前轮偏转角
    R 瞬时转向半径
    P 瞬时转向中心
    $ \omega $ 车身横摆率
    下载: 导出CSV

    表  2  无人自主小车参数

    名称 数值
    轴距l/cm 26
    后轮速度$ {v_{\rm{r}}} $/(m/s) 1
    舵机工作电压/V 6.6
    舵机扭力/(kg/cm) 13
    直流电机KV值 13.5 T-3400 KV
    电池工作电压/V 7.4
    下载: 导出CSV
  • [1] PADEN B, CAP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33-55. doi: 10.1109/TIV.2016.2578706
    [2] 郭景华, 李克强, 罗禹贡. 智能车辆运动控制研究综述[J]. 汽车安全与节能学报, 2016(2): 151-159. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201602003.htm

    GUO Jinghua, LI Keqiang, LUO Yugong. Review on the research of motion control for intelligent vehicles[J]. Journal of Automotive Safety and Energy, 2016(2): 151-159. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201602003.htm
    [3] 姜岩, 陈慧岩, 熊光明, 等. 无人驾驶汽车概论[M]. 北京: 北京理工大学出版社, 2014.

    JIANG Yan, CHEN Huiyan, XIONG Guangming, et al. Introduction to self-driving vehicles[M]. Beijing: Beijing Institute of Technology Press, 2014.
    [4] LAPIERRE L, JOUVENCEL B. Robust nonlinear path-following control of an AUV[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 89-102. doi: 10.1109/JOE.2008.923554
    [5] XU D, SHI Y, JI Z. Model-free adaptive discrete-time integral sliding-mode-constrained-control for autonomous 4WMV parking systems[J]. IEEE Transactions on Industrial Electronics, 2017, 65(1): 834-843.
    [6] 陈刚, 吴俊. 无人驾驶机器人车辆非线性模糊滑模车速控制[J]. 中国公路学报, 2019, 32(6): 114-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906013.htm

    CHEN Gang, WU Jun. Nonlinear fuzzy sliding mode speed control for unmanned driving robotic vehicle[J]. China Journal of Highway and Transport, 2019, 32(6): 114-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906013.htm
    [7] 王家恩, 陈无畏, 王檀彬, 等. 基于期望横摆角速度的视觉导航智能车辆横向控制[J]. 机械工程学报, 2012, 48(4): 108-115. http://www.cjmenet.com.cn/CN/Y2012/V48/I4/108

    WANG Jiaen, CHEN Wuwei, WANG Tanbin, et al. Vision guided intelligent vehicle lateral control based on desired yaw rate[J]. Journal of Mechanical Engineering, 2012, 48(4): 108-115. http://www.cjmenet.com.cn/CN/Y2012/V48/I4/108
    [8] NGUYEN A T, SENTOUH C, POPIEUL J C. Sensor reduction for driver-automation shared steering control via an adaptive authority allocation strategy[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 5-16. doi: 10.1109/TMECH.2017.2698216
    [9] HWANG C, YANG C, HUNG J. Path tracking of an autonomous ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 899-914. doi: 10.1109/TFUZZ.2017.2698370
    [10] 章仁燮, 熊璐, 余卓平, 等. 基于条件积分算法的无人驾驶车辆轨迹跟踪鲁棒控制方法[J]. 机械工程学报, 2018(18): 129-139. doi: 10.3901/JME.2018.18.129

    ZHANG Renxie, XIONG Lu, YU Zhuoping, et al. Robust trajectory tracking control of autonomous vehicles based on condition integration method[J]. Journal of Mechanical Engineering, 2018 (18): 129-139. doi: 10.3901/JME.2018.18.129
    [11] 宋彦, 赵盼, 陶翔, 等. 基于μ综合的无人驾驶车辆路径跟随串级鲁棒控制方法[J]. 机器人, 2013, 35(4): 417-424. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201304005.htm

    SONG Yan, ZHAO Pan, TAO Xiang, et al. UGV robust path following control under double loop structure with μ synthesis[J]. Robot, 2013, 35(4): 417-424. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201304005.htm
    [12] JI X, HE X, Lv C, et al. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits[J]. Control Engineering Practice, 2018, 76: 41-53. doi: 10.1016/j.conengprac.2018.04.007
    [13] TAGHAVIFAR H. Neural network autoregressive with exogenous input assisted multi-constraint nonlinear predictive control of autonomous vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6293-6304. doi: 10.1109/TVT.2019.2914027
    [14] HUANG Z, XU X, HE H, et al. Parameterized batch reinforcement learning for longitudinal control of autonomous land vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(4): 730-741. doi: 10.1109/TSMC.2017.2712561
    [15] TAGHAVIFAR H, RAKHEJA S. A novel terramechanics-based path-tracking control of terrain-based wheeled robot vehicle with matched-mismatched uncertainties[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 67-77. doi: 10.1109/TVT.2019.2950288
    [16] 王艺, 蔡英凤, 陈龙, 等. 基于模型预测控制的智能网联汽车路径跟踪控制器设计[J]. 机械工程学报, 2019, 55(8): 136-144, 153. doi: 10.3901/JME.2019.08.136

    WANG Yi, CAI Yingfeng, CHEN Long, et al. Design of intelligent and connected vehicle path tracking controller based on model predictive control[J]. Journal of Mechanical Engineering, 2019, 55(8): 136-144, 153. doi: 10.3901/JME.2019.08.136
    [17] ERLIEN S M, FUJITA S, GERDES J C. Shared steering control using safe envelopes for obstacle avoidance and vehicle stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 441-451.
    [18] GUO H, CHEN S, ZHANG H, et al. Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems: a case study of obstacle avoidance for an intelligent vehicle[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4273-4283.
    [19] SCHWARTING W, ALONSO-MORA J, PAULL L, et al. Safe nonlinear trajectory generation for parallel autonomy with a dynamic vehicle model[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2994-3008.
    [20] 冀杰, 唐志荣, 吴明阳, 等. 面向车道变换的路径规划及模型预测轨迹跟踪[J]. 中国公路学报, 2018, 31(4): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201804022.htm

    JI Jie, TANG Zhirong, WU Mingyang, et al. Path planning and tracking for lane changing based on model predictive control[J]. China Journal of Highway and Transport, 2018, 31(4): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201804022.htm
    [21] BUJARBARUAH M, ZHANG X, TSENG H E, et al. Adaptive MPC for autonomous lane keeping[C]//14th International Symposium on Advanced Vehicle Control (AVEC), 2008: 223-225.
    [22] KIM E, KIM J, SUNWOO M. Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics[J]. International Journal of Automotive Technology, 2014, 15(7): 1155-1164.
    [23] CHEN S, GUO H, et al. MPC-based path tracking controller design for autonomous ground vehicles[C]// Chinese Control Conference, 2017: 1934-1768.
    [24] CHEN Y, HU C, WANG J. Human-centered trajectory tracking control for autonomous vehicles with driver cut-in behavior prediction[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8461-8471.
    [25] 辛喆, 陈海亮, 林子钰, 等. 智能汽车的路面附着极限横向轨迹跟踪控制[J]. 机械工程学报, 2020, 56(14): 138-145. doi: 10.3901/JME.2020.14.138

    XIN Zhe, CHEN Hailiang, LIN Ziyu, et al. Lateral trajectory following for automated vehicles at handling limits[J]. Journal of Mechanical Engineering, 2020, 56(14): 138-145. doi: 10.3901/JME.2020.14.138
    [26] 任玥, 郑玲, 张巍, 等. 基于模型预测控制的智能车辆主动避撞控制研究[J]. 汽车工程, 2019, 41(04): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201904008.htm

    REN Yue, ZHENG Ling, ZHANG Wei, et al. A study on collision avoidance control of autonomous vehicles based on model predictive control[J]. Automotive Engineering, 2019, 41(4): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201904008.htm
    [27] KOUVARITAKIS B, CANNON M, ROSSITER J A. Who needs QP for linear MPC anyway? [J]. Automatica, 2002, 38(5): 879-884.
    [28] NAUS G, DEN Bleek R V, PLOEG J, et al. Explicit MPC design and performance evaluation of an ACC Stop-&-Go[C]// American Control Conference, 2008: 224-229.
    [29] LI S, JIA Z, LI K, et al. Fast online computation of a model predictive controller and its application to fuel economy–oriented adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1199-1209.
    [30] TUCHNER A, HADDAD J. Vehicle platoon formation using interpolating control: A laboratory experimental analysis[J]. Transportation Research Part C-Emerging Technologies, 2017, 84: 21-47.
    [31] HOFFMANN C, WERNER H. A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations[J]. IEEE Transactions on Control Systems and Technology, 2015, 23(2): 416-433.
    [32] SENAME O, GASPAR P, BOKOR J. Robust control and linear parameter varying approaches: application to vehicle dynamics[M]. Springer, 2013.
    [33] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014.

    GONG Jianwei, JIANG Yan, XU Wei. Model predictive control for self-driving vehicles[J]. Beijing: Beijing Institute of Technology Press, 2014.
    [34] PANG H, ZHANG X, YANG J, et al. Adaptive backstepping-based control design for uncertain nonlinear active suspension system with input delay[J]. International Journal of Robust and Nonlinear Control, 2019, 29(16): 5781-5800.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-07-25
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回