Solvability and stability analysis of a coupled system involving generalized fractional derivatives
doi: 10.3934/math.2023393
-
Abstract: In this article, we investigate the existence of unique maximal and minimal solutions for a coupled differential system in terms of generalized fractional derivative with arbitrary order. The iterative technique of a fixed point operator together with the properties of green's function are used basically. Moreover, we investigate the generalized Ulam-Hyers stability of the solution for the given coupled system. Finally, some examples are given to illustrate the theoretic results.
-
[1] M. Feng, X. Zhang, W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value. Probl., 2011 (2011), 720702. https://doi.org/10.1155/2011/720702 [2] M. Houas, M. Benbachir, Existence and uniqueness results for a nonlinear differential equations of arbitrary order, Int. J. Nonlinear Anal., 6 (2015), 77–92. https://doi.org/10.22075/IJNAA.2015.256 [3] A. Kilbas, H. Srivastara, J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, North-Holland Mathematics studies, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 [4] J. Wang, H. Xiang, Z. Liu, Positive solutions to nonzero boundary value problem for a coupled system of nonlinear fractional differential equations, Int. J. Differ. Equ., 2010 (2010), 186928. https://doi.org/10.1155/2010/186928 [5] H. Zhang, Y. Li, W. Lu, Existence and uniqueness of solutions for a coupled system of nonlinear fractional diferential equations with fractional integral boundary conditions, J. Nonlinear Sci. Appl., 9 (2016), 2434–2447. https://doi.org/10.22436/jnsa.009.05.43 [6] Y. Zhao, S. Sun, Z. Han, Q. Li, The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2086–2097. https://doi.org/10.1016/j.cnsns.2010.08.017 [7] K. Shah, R. A. Khan, Iterative solutions to a coupled system of non-linear fractional differential equations, J. Fract. Calc. Appl., 7 (2016), 40–50. [8] S. Ali, K. Shah, F. Jarad, On stable iterative solutions for a class of boundary value problem of nonlinear fractional order differential equations, Math. Methods Appl. Sci., 42 (2019), 969–981. https://doi.org/10.1002/mma.5407 [9] S. Ali, A. T. Abdeljawad, K. Shah, F. Jarad, M. Arif, Computation of iterative solutions along with stability analysis to a coupled system of fractional order differential equations, Adv. Differ. Equ., 2019 (2019), 215. https://doi.org/10.1186/s13662-019-2151-z [10] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, New York: Academic Press, 1999. [11] A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403–411. https://doi.org/10.1016/j.jmaa.2011.11.065 [12] A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integral and derivatives, Switzerland: Gordon and Breach, 1993. [13] M. M. Matar, M. Abu Jarad, M. Ahmad, A. Zada, S. Etemad, S. Rezapour, On the existence and stability of two positive solutions of a hybrid differential system of arbitrary fractional order via Avery–Anderson–Henderson criterion on cones, Adv. Differ. Equ., 2021 (2021), 423. https://doi.org/10.1186/s13662-021-03576-6 [14] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. [15] A. K. Tripathy, Ulam-Hyers stability of ordinary differential equations, New York: Chapman and Hall Book, 2021. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0 [16] M. E. Samei, M. M. Matar, S. Etemad, S. Rezapour, On the generalized fractional snap boundary problems via G-Caputo operators: existence and stability analysis, Adv. Differ. Equ., 2021 (2021), 498. https://doi.org/10.1186/s13662-021-03654-9 [17] I. Suwan, M. Abdo, T. Abdeljawad, M. Matar, A. Boutiara, M. Almalahi, Existence theorems for $\Psi$-fractional hybrid systems with periodic boundary conditions, AIMS Math., 7 (2022), 171–186. https://doi.org/10.3934/math.2022010 [18] N. Tabouche, A. Berhail, M. M. Matar, J. Alzabut, A. G. M. Selvam, D. Vignesh, Existence and stability analysis of solution for Mathieu fractional differential equations with applications on some physical phenomena, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 973–982. https://doi.org/10.1007/s40995-021-01076-6 [19] X. Wang, A. Berhail, N. Tabouche, M. M. Matar, M. E. Samei, M. K. A. Kaabar, et al., A novel investigation of non-periodic snap BVP in the G-Caputo sense, Axioms, 11 (2022), 390. https://doi.org/10.3390/axioms11080390 [20] E. Zeidler, Nonlinear functional analysis and its applications, part Ⅱ/B: nonlinear monotone operators, New York: Springer, 1990. http://dx.doi.org/10.1007/978-1-4612-0981-2 [21] S. H. Elhag, F. S. Bayones, A. A. Kilany, S. M. Abo-Dahab, E. A. B. Abdel-Salam, M. Elsagheer, et al., Noninteger derivative order analysis on plane wave reflection from electro-magneto-thermo-microstretch medium with a gravity field within the three-phase lag model, Adv. Math. Phys., 2022 (2022), 6559779. https://doi.org/10.1155/2022/6559779 [22] E. A. B. Abdel-Salam, M. S. Jazmati, H. Ahmad, Geometrical study and solutions for family of burgers-like equation with fractional order space time, Alexandria Eng. J., 61 (2022), 511–521. https://doi.org/10.1016/j.aej.2021.06.032 [23] Y. A. Azzam, E. A. B. Abdel-Salam, M. I. Nouh, Artificial neural network modeling of the conformable fractional isothermal gas spheres, Rev. Mex. Astron. Astrofis., 57 (2021), 189–198. https://doi.org/10.22201/ia.01851101p.2021.57.01.14 [24] E. A. B. Abdel-Salam, M. I. Nouh, Conformable fractional polytropic gas spheres, New Astron., 76 (2020), 101322. https://doi.org/10.1016/j.newast.2019.101322 [25] S. M. Abo-Dahab, A. A. Kilany, E. A. B. Abdel-Salam, A. Hatem, Fractional derivative order analysis and temperature-dependent properties on p- and SV-waves reflection under initial stress and three-phase-lag model, Results Phys., 18 (2020), 103270. https://doi.org/10.1016/j.rinp.2020.103270 [26] M. M. Matar, J. Alzabut, M. I. Abbas, M. M. Awadallah, N. I. Mahmudov, On qualitative analysis for time-dependent semi-linear fractional differential systems, Prog. Fract. Differ. Appl., 8 (2022), 525–544. https://doi.org/10.18576/pfda/080406
点击查看大图
计量
- 文章访问数: 50
- HTML全文浏览量: 23
- PDF下载量: 0
- 被引次数: 0