留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solvability and stability analysis of a coupled system involving generalized fractional derivatives

Djaout Abdallah Benbachir Maamar Lakrib Mustapha Matar Mohammed M. Khan Aziz Abdeljawad Thabet

Djaout Abdallah, Benbachir Maamar, Lakrib Mustapha, Matar Mohammed M., Khan Aziz, Abdeljawad Thabet. Solvability and stability analysis of a coupled system involving generalized fractional derivatives[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.3934/math.2023393
Citation: Djaout Abdallah, Benbachir Maamar, Lakrib Mustapha, Matar Mohammed M., Khan Aziz, Abdeljawad Thabet. Solvability and stability analysis of a coupled system involving generalized fractional derivatives[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.3934/math.2023393

Solvability and stability analysis of a coupled system involving generalized fractional derivatives

doi: 10.3934/math.2023393
More Information
  • [1] M. Feng, X. Zhang, W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value. Probl., 2011 (2011), 720702. https://doi.org/10.1155/2011/720702
    [2] M. Houas, M. Benbachir, Existence and uniqueness results for a nonlinear differential equations of arbitrary order, Int. J. Nonlinear Anal., 6 (2015), 77–92. https://doi.org/10.22075/IJNAA.2015.256
    [3] A. Kilbas, H. Srivastara, J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, North-Holland Mathematics studies, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0
    [4] J. Wang, H. Xiang, Z. Liu, Positive solutions to nonzero boundary value problem for a coupled system of nonlinear fractional differential equations, Int. J. Differ. Equ., 2010 (2010), 186928. https://doi.org/10.1155/2010/186928
    [5] H. Zhang, Y. Li, W. Lu, Existence and uniqueness of solutions for a coupled system of nonlinear fractional diferential equations with fractional integral boundary conditions, J. Nonlinear Sci. Appl., 9 (2016), 2434–2447. https://doi.org/10.22436/jnsa.009.05.43
    [6] Y. Zhao, S. Sun, Z. Han, Q. Li, The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2086–2097. https://doi.org/10.1016/j.cnsns.2010.08.017
    [7] K. Shah, R. A. Khan, Iterative solutions to a coupled system of non-linear fractional differential equations, J. Fract. Calc. Appl., 7 (2016), 40–50.
    [8] S. Ali, K. Shah, F. Jarad, On stable iterative solutions for a class of boundary value problem of nonlinear fractional order differential equations, Math. Methods Appl. Sci., 42 (2019), 969–981. https://doi.org/10.1002/mma.5407
    [9] S. Ali, A. T. Abdeljawad, K. Shah, F. Jarad, M. Arif, Computation of iterative solutions along with stability analysis to a coupled system of fractional order differential equations, Adv. Differ. Equ., 2019 (2019), 215. https://doi.org/10.1186/s13662-019-2151-z
    [10] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, New York: Academic Press, 1999.
    [11] A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403–411. https://doi.org/10.1016/j.jmaa.2011.11.065
    [12] A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integral and derivatives, Switzerland: Gordon and Breach, 1993.
    [13] M. M. Matar, M. Abu Jarad, M. Ahmad, A. Zada, S. Etemad, S. Rezapour, On the existence and stability of two positive solutions of a hybrid differential system of arbitrary fractional order via Avery–Anderson–Henderson criterion on cones, Adv. Differ. Equ., 2021 (2021), 423. https://doi.org/10.1186/s13662-021-03576-6
    [14] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [15] A. K. Tripathy, Ulam-Hyers stability of ordinary differential equations, New York: Chapman and Hall Book, 2021. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0
    [16] M. E. Samei, M. M. Matar, S. Etemad, S. Rezapour, On the generalized fractional snap boundary problems via G-Caputo operators: existence and stability analysis, Adv. Differ. Equ., 2021 (2021), 498. https://doi.org/10.1186/s13662-021-03654-9
    [17] I. Suwan, M. Abdo, T. Abdeljawad, M. Matar, A. Boutiara, M. Almalahi, Existence theorems for $\Psi$-fractional hybrid systems with periodic boundary conditions, AIMS Math., 7 (2022), 171–186. https://doi.org/10.3934/math.2022010
    [18] N. Tabouche, A. Berhail, M. M. Matar, J. Alzabut, A. G. M. Selvam, D. Vignesh, Existence and stability analysis of solution for Mathieu fractional differential equations with applications on some physical phenomena, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 973–982. https://doi.org/10.1007/s40995-021-01076-6
    [19] X. Wang, A. Berhail, N. Tabouche, M. M. Matar, M. E. Samei, M. K. A. Kaabar, et al., A novel investigation of non-periodic snap BVP in the G-Caputo sense, Axioms, 11 (2022), 390. https://doi.org/10.3390/axioms11080390
    [20] E. Zeidler, Nonlinear functional analysis and its applications, part Ⅱ/B: nonlinear monotone operators, New York: Springer, 1990. http://dx.doi.org/10.1007/978-1-4612-0981-2
    [21] S. H. Elhag, F. S. Bayones, A. A. Kilany, S. M. Abo-Dahab, E. A. B. Abdel-Salam, M. Elsagheer, et al., Noninteger derivative order analysis on plane wave reflection from electro-magneto-thermo-microstretch medium with a gravity field within the three-phase lag model, Adv. Math. Phys., 2022 (2022), 6559779. https://doi.org/10.1155/2022/6559779
    [22] E. A. B. Abdel-Salam, M. S. Jazmati, H. Ahmad, Geometrical study and solutions for family of burgers-like equation with fractional order space time, Alexandria Eng. J., 61 (2022), 511–521. https://doi.org/10.1016/j.aej.2021.06.032
    [23] Y. A. Azzam, E. A. B. Abdel-Salam, M. I. Nouh, Artificial neural network modeling of the conformable fractional isothermal gas spheres, Rev. Mex. Astron. Astrofis., 57 (2021), 189–198. https://doi.org/10.22201/ia.01851101p.2021.57.01.14
    [24] E. A. B. Abdel-Salam, M. I. Nouh, Conformable fractional polytropic gas spheres, New Astron., 76 (2020), 101322. https://doi.org/10.1016/j.newast.2019.101322
    [25] S. M. Abo-Dahab, A. A. Kilany, E. A. B. Abdel-Salam, A. Hatem, Fractional derivative order analysis and temperature-dependent properties on p- and SV-waves reflection under initial stress and three-phase-lag model, Results Phys., 18 (2020), 103270. https://doi.org/10.1016/j.rinp.2020.103270
    [26] M. M. Matar, J. Alzabut, M. I. Abbas, M. M. Awadallah, N. I. Mahmudov, On qualitative analysis for time-dependent semi-linear fractional differential systems, Prog. Fract. Differ. Appl., 8 (2022), 525–544. https://doi.org/10.18576/pfda/080406
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-23
  • 修回日期:  2023-01-05
  • 录用日期:  2023-01-09
  • 网络出版日期:  2023-02-03

目录

    /

    返回文章
    返回