留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Control and elimination in an SEIR model for the disease dynamics of COVID-19 with vaccination

Witbooi Peter Joseph Vyambwera Sibaliwe Maku Nsuami Mozart Umba

Witbooi Peter Joseph, Vyambwera Sibaliwe Maku, Nsuami Mozart Umba. Control and elimination in an SEIR model for the disease dynamics of COVID-19 with vaccination[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.3934/math.2023411
Citation: Witbooi Peter Joseph, Vyambwera Sibaliwe Maku, Nsuami Mozart Umba. Control and elimination in an SEIR model for the disease dynamics of COVID-19 with vaccination[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.3934/math.2023411

Control and elimination in an SEIR model for the disease dynamics of COVID-19 with vaccination

doi: 10.3934/math.2023411
More Information
    Corresponding author: Witbooi Peter Joseph, Email: pwitbooi@uwc.ac.za; Tel: +27(0)219593027; Fax: +27(0)219591241
  • Figure  1.  Structure of COVID-19 model

    Figure  2.  New cases in South Africa over the period 24 July 2020 – 05 November 2020

    Figure  3.  New cases in South Africa over the period 08 January 2021 – 29 April 2021

    Figure  4.  Stabilization of the model subsequent to April 2021

    Figure  5.  $ u_1 $: vaccination component of the optimal control

    Figure  6.  $ u_2 $: reduction of the contact rate during optimal control

    Figure  7.  Comparison of the E-classes under optimal control

    Figure  8.  E-classes under optimal control (with adjusted initial values)

    Figure  9.  I-classes under optimal control (with adjusted initial values)

    $ P_0 $ The size of the population at the disease-free state
    $ A_0 $ Rate of birth of newborns, assumed to be susceptibles; Note that $ A_0 > 0 $
    $ A_1 $ Rate of inflow into the $ E $-class; $ A_1\geq 0 $
    $ \theta(I) $ Contact rate, a function of $ I $
    $ \delta_1 $ and $ \delta_2 $ Disease-induced mortality rate, for $ E $ and $ I $ classes, respectively
    $ z $ Vaccination rate
    $ \alpha $ Transfer rate of from $ E $-class to $ I $-class
    $ \omega_1 $ Transfer rate of from $ E $-class to $ R $-class
    $ \omega_2 $ Transfer rate of from $ I $-class to $ R $-class
    $ \mu $ The average mortality rate by natural causes.
    下载: 导出CSV

    Table  1.   Parameter values

    Parameters Numerical values Source
    $ P_0 $ 69281690 cf. [33]
    $ \mu $ $ 8.43\times 10^{-5} $ [33]
    $ A_0 $ $ \mu P_0 $ (standard)
    $ A_1 $ 0 nominal
    $ \beta $ $ 0.39/P_0 $ fitted
    $ b $ $ 7\times 10^{-5} $ fitted
    $ \alpha $ 1/9 [32]
    $ z $ 0 see Remark 6.2.1
    $ \delta_1 $ $ 0.05\delta_2 $ estimate
    $ \delta_2 $ $ 0.0015 $ [12]
    $ \omega_1 $ $ 0.05\omega_2 $ estimate
    $ \omega_2 $ 0.006 [28]
    下载: 导出CSV
  • [1] S. Y. Tchoumi, M. L. Diagne, H. Rwezaura, J. M. Tchuenche, Malaria and COVID-19 co-dynamics: A mathematical model and optimal control, Appl. Math. Model., 99 (2021), 294–327. https://doi.org/10.1016/j.apm.2021.06.016
    [2] T. A. Perkins, G. Espana, Optimal Control of the COVID-19 Pandemic with Non-pharmaceutical Interventions, Math. Biol., 82 (2020). https://doi.org/10.1007/s11538-020-00795-y
    [3] M. Kantner, T. Koprucki, Beyond just "flattening the curve": Optimal control of epidemics with purely non-pharmaceutical interventions, J. Ind. Math., 10 (2020). https://doi.org/10.1186/s13362-020-00091-3
    [4] Y. Yuan, N. Li, Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness, Phys. A, 603 (2022), 127804. https://doi.org/10.1016/j.physa.2022.127804
    [5] R. T. Alqahtani, A. Ajbar, Study of dynamics of a COVID-19 model for saudi arabia with vaccination rate, saturated treatment function and saturated incidence rate, Mathematics, 9 (2021), 3134. https://doi.org/10.3390/math9233134
    [6] B. Boukanjime, T. Caraballo, M. El Fatini, M. El Khalifi, Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching, Chaos Solit. Fractals, 141 (2020), 110361. https://doi.org/10.1016/j.chaos.2020.110361
    [7] Disaster Management Act. Regulations to address, prevent and combat the spread of coronavirus COVID-19: amendment. https://www.gov.za/documents/disaster-management-act-regulations-address-prevent-and-combat-spread-coronavirus-covid-19. (Accessed June 24, 2020).
    [8] L. E. Olivier, S. Botha, I. K. Craig, Optimized Lockdown Strategies for Curbing the Spread of COVID-19: A South African Case Study, IEEE Access : Practical Innovations, Open Solutions, 8 (2020), 205755–205765. https://doi.org/10.1109/ACCESS.2020.3037415
    [9] W. H. Fleming, H. M. Soner, Controlled Markov processes and viscosity solutions. Second edition, Stoch. Model. Appl. Probab., 25. Springer, New York, 2006. XVII, 429 pages. https://doi.org/10.1007/0-387-31071-1
    [10] M. Cerón Gómez, E. I. Mondragon, P. L. Molano, Global stability analysis for a model with carriers and non-linear incidence rate, J. Biol. Dyn., 14 (2020), 409–420. https://doi.org/10.1080/17513758.2020.1772998
    [11] P. C. Jentsch, M. Anand, C. T. Bauch, Prioritising COVID-19 vaccination in changing social and epidemiological landscapes: a mathematical modelling study, Lancet Infect Dis., 21 (2021), 1097–1106. https://doi.org/10.1101/2020.09.25.20201889
    [12] M. A. Khan, A. Atangana, Mathematical modeling and analysis of COVID-19: A study of new variant Omicron, Phys. A, 599 (2022), 127452. https://doi.org/10.1016/j.physa.2022.127452
    [13] Z. A. Khan, A. L. Alaoui, A. Zeb, M. Tilioua, S. Djilali, Global dynamics of a SEI epidemic model with immigration and generalized nonlinear incidence functional, Results Phys., 27 (2021), 104477. https://doi.org/10.1016/j.rinp.2021.104477
    [14] M. Kinyili, J. B. Munyakazi, A. Y. A. Mukhtar, Assessing the impact of vaccination on COVID-19 in South Africa using mathematical modeling, Appl. Math. Inf. Sci., 15 (2021), 701–716. http://dx.doi.org/10.18576/amis/150604
    [15] S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, (1st Ed.). Chapman and Hall/CRC. (2007). https://doi.org/10.1201/9781420011418
    [16] A. K. Mengistu, P. J. Witbooi, Tuberculosis in Ethiopia: Optimal Intervention Strategies and Cost-Effectiveness Analysis, Axioms, 11 (2022), 343. https://doi.org/10.3390/axioms11070343
    [17] S. Mushayabasa, E. T. Ngarakana-Gwasira, J. Mushanyu, On the role of governmental action and individual reaction on COVID-19 dynamics in South Africa: A mathematical modelling study, Inform. Med. Unlocked., 20 (2020), 100387. https://doi.org/10.1016/j.imu.2020.100387
    [18] S. P. Gatyeni, C. W. Chukwu, F. Chirove, Fatmawati, F. Nyabadza, Application of Optimal Control to Long Term Dynamics of COVID-19 Disease in South Africa, Sci. Afr., 16 (2020), e01268. https://doi.org/10.1016/j.sciaf.2022.e01268
    [19] E. Tornatore, P. Vetro, S. M. Buccellato, SIVR epidemic model with stochastic perturbation, Neural Comput. Appl., 24 (2014), 309–315. https://doi.org/10.1007/s00521-012-1225-6
    [20] N. Dalal, D. Greenhalgh, X. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl., 325 (2007), 36–53. ISSN 0022-247X. https://doi.org/10.1016/j.jmaa.2006.01.055
    [21] O. S. Obabiyi, A. Onifade, Mathematical model for Lassa fever transmission dynamics with variable human and reservoir population, Int. J. Differ. Equ., 16 (2017), 67–91. http://dx.doi.org/10.12732/ijdea.v16i1.4703
    [22] C. M. Peak, R. Kahn, Y. H. Grad, L. M. Childs, R. Li, M. Lipsitch, et al., Individual quarantine versus active monitoring of contacts for the mitigation of COVID-19: a modelling study, Lancet Infect Dis., 20 (2020), 1025–1033. https://doi.org/10.1016/S1473-3099(20)30361-3
    [23] J. Lamwong, P. Pongsumpun, I. M. Tang, N. Wongvanich, The Lyapunov Analyses of MERS-Cov Transmission in Thailand, Curr. Appl. Sci. Technol., 19 (2019), 112–122. https://li01.tci-thaijo.org/index.php/cast/article/view/182299
    [24] R. P. Sigdel, C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684–689. https://doi.org/10.1016/j.amc.2014.06.020
    [25] A. Atangana, S. Iǧret Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications, Adv. Differ. Equ., 2020 (2020). https://doi.org/10.1186/s13662-020-03095-w
    [26] G. T. Tilahun, H. T. Alemneh, Mathematical modeling and optimal control analysis of COVID-19 in Ethiopia, J. Interdiscip. Math., 24 (2021), 2101–2120. https://doi.org/10.1080/09720502.2021.1874086
    [27] B. Traore, O. Koutou, B. Sangare, Global dynamics of a seasonal mathematical model of schistosomiasis transmission with general incidence function J. Biol. Syst., 27 (2019), 19–49. https://doi.org/10.1142/S0218339019500025
    [28] A. Rahmani, G. Dini, V. Leso, A. Montecucco, B. Kusznir Vitturi, I. Iavicoli, et al., Duration of SARS-CoV-2 shedding and infectivity in the working age population: A systematic review and meta-analysis, Med. Lav., 113 (2022), e2022014. https://doi.org/10.23749/mdl.v113i2.12724
    [29] Western Cape Department of Health in collaboration with the National Institute for Communicable Diseases, South Africa. "Risk factors for coronavirus disease 2019 (COVID-19) death in a population cohort study from the Western Cape Province, South Africa". Clin. Infect. Dis., 73 (2021), e2005–e2015. 10.1093/cid/ciaa1198
    [30] A. R. Tuite, D. N. Fisman, A. L. Greer, Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada, CMAJ, 192 (2020), E497–E505. https://doi.org/10.1503/cmaj.200476
    [31] P. Van Den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental model of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6
    [32] C. R. Wells, J. P. Townsend, A. Pandey, S. M. Moghadas, G. Krieger, B. Singer, et al., Optimal COVID-19 quarantine and testing strategies, Nat. Commun., 212, (2021). https://doi.org/10.1038/s41467-020-20742-8
    [33] P. J. Witbooi, An SEIR model with infected immigrants and recovered emigrants, Adv. Differ. Equ., 2021, (2021). https://doi.org/10.1186/s13662-021-03488-5
    [34] P. J. Witbooi, C. Africa, A. Christoffels, I. H. I. Ahmed, A population model for the 2017/18 listeriosis outbreak in South Africa, Plos One, 15 (2020), e0229901. https://doi.org/10.1371/journal.pone.0229901
    [35] Worldometers. Available from: https://covid19.who.int/region/afro/country/za
    [36] H. Zine, E. M. Lotfi, M. Mahrouf, A. Boukhouima, Y. Aqachmar, K. Hattaf, et al., Modeling the spread of COVID-19 pandemic in Morocco. In; Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact, Springer, Singapore, (2021), 599–615. https://doi.org/10.1007/978-981-16-2450-6_28
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  57
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-04
  • 修回日期:  2022-11-16
  • 录用日期:  2022-11-22
  • 网络出版日期:  2023-02-02

目录

    /

    返回文章
    返回