Sources and degradation of organic matter in the Bering Sea and the western Arctic Ocean: Implication from fatty acids
-
摘要: 白令海、西北冰洋等高生产力海域在北冰洋“生物泵”中起到重要作用;海水升温、海冰消退等北极快速变化,将强烈影响该海域“生物泵”的结构与规模,并在沉积物中有机质的来源与新鲜程度上有所体现,可用脂肪酸加以指征。对第五次、第六次中国北极科学考察在以上海域采集的表层沉积物进行脂肪酸含量(以沉积物干重计)及组成分析,结果显示楚科奇海陆架总脂肪酸含量非常高((97.15± 55.31) μg/g),白令海盆最低((15.00±1.30) μg/g),加拿大海盆、楚科奇海陆坡、白令海陆架居中(分别为(88.65 ± 3.52) μg/g,(70.35±11.32) μg/g与(38.28±14.89) μg/g)。海源脂肪酸占总脂肪酸比例最高(86.82%±7.08%),陆源次之(8.45%±6.62%),细菌最低(4.63%±2.24%);硅藻指数(16:1ω9/16:0)在楚科奇海陆架(> 0.82)、白令海陆架边缘(> 0.65)较高,其他区域均较低。脂肪酸结果表明:(1) 该海域沉积有机质主要来自海源,陆源贡献小;在北部、南部楚科奇海陆架、白令海陆架边缘,硅藻生物量占主要优势;细菌脂肪酸比例显著低于温暖海域,指示低温抑制细菌活动。(2) 楚科奇海陆架区硅藻生产力高、细菌活动弱,新鲜有机质沉降效率高,但对未来海水升温、浮游植物群落变化也较为敏感。(3) 加拿大海盆、楚科奇海陆坡的浮游植物群落由绿藻与金藻主导。以上结论说明脂肪酸可指示表层沉积物中有机质的来源与新鲜程度;未来,脂肪酸有望进一步揭示北冰洋“生物泵”对北极快速变化的响应。Abstract: The Bering Sea and western Arctic Ocean, as high production areas, play a key role in the Arctic Ocean biological pump, and are vulnerable to abrupt climate change, especially sea water warming and sea ice melt. Alterations in biological pump can influence the sources and degradation of sedimentary organic matter, and thus can be indicated by fatty acid (FA) content and composition of sediment. FA analysis of surface sediments, collected during the 5th and 6th Chinese Arctic Research Expeditions, showed that the total FA of the Chukchi Shelf was exceptionally high ((97.15 ± 55.31) μg/g), while the Bering Basin was the lowest ((15.00 ± 1.3) μg/g), and the Canada Basin, the Chukchi Shelf and the Bering Shelf were intermediate ((88.65 ± 3.52) μg/g, (70.35 ± 11.32) μg/g and (38.28 ± 14.89) μg/g, respectively). Marine FAs (short chain saturated FA + unsaturated FA) accounted for the most abundant (86.82% ± 7.08%), terrestrial FAs (long chain saturated FA) as the second abundant (8.45% ± 6.62%), while bacterial FAs (odd FA) as the least (4.63% ± 2.24%); diatom index (16:1ω9/16:0) was high at the southern and northern Chukchi Shelf (> 0.82) and the Bering Shelf edge (> 0.65), while it was low at the rest areas. These results indicated that: (1) marine source was the major contributor of sedimentary organic matter of the Bering Sea and the western Arctic Ocean, while terrestrial one contributes minor; diatom predominates was the primary producers of the southern and northern Chukchi Shelf and the Bering Shelf edge; percentage of bacterial FAs was remarkably low, comparing with tropical and temperate seas, suggesting a suppressed bacterial activity under low temperature; (2) labile organic matter accumulation rate was extremely high at the Chukchi Shelf, and was extremely sensitive to sea water warming and sea ice melt; (3) chlorophyceae and prymnesiophyceae dominate phytoplankton community at the Canada Basin and the Chukchi Slope. In conclusion, FA of surface sediment can be used to indicate sources and degradation of organic matter in the Bering Sea and the western Arctic Ocean; further, combining with other samples and biomarkers, FA was viable to shed light on the response of biological pump under the abrupt Arctic climate change.
-
Key words:
- Bering Sea /
- western Arctic Ocean /
- Organic Matter /
- fatty acid /
- biological pump /
- abrupt Arctic climate change
-
表 1 白令海及楚科奇海表层沉积物站位信息及样品脂肪酸含量
Table 1. FA, TOC and station properties of the Bering Sea and western Arctic Ocean surface sediments
区域 站位 经纬度 水深/ m TOC /% TFA
/μg·g–1SCSFA /μg·g–1 LCSFA /μg·g–1 MUFA /μg·g–1 PUFA /μg·g–1 Odd FA /μg·g–1 白令海盆 BL03 53.98°N,170.72°E 3 592.00 0.64 13.70 10.72 1.98 0.34 0.23 0.43 BL07 57.40°N,175.12°E 3 771.00 0.24 16.30 10.61 4.16 0.00 0.51 1.02 白令海陆架 BL12 60.69°N,178.85°W 225.00 1.10 30.39 13.34 4.30 9.87 2.45 0.44 BS01 61.12°N,177.26°W 127.00 1.61 34.71 14.81 1.78 14.55 1.31 1.66 BS02 61.13°N,175.53°W 99.00 1.62 63.51 46.93 8.97 4.07 1.14 2.40 BL14 61.93°N,176.42°W 102.00 1.75 16.02 13.06 0.87 0.00 0.00 2.10 BM07 62.48°N,167.33°W 30.00 0.20 20.55 14.32 1.76 3.67 0.18 0.42 BM04 62.70°N,173.00°W 63.00 1.16 45.65 24.92 4.55 13.61 0.00 2.55 BM05 62.79°N,173.92°W 45.00 0.39 44.41 35.68 3.30 1.25 1.13 3.04 BN08 64.61°N,167.46°W 27.00 0.62 51.00 20.38 6.36 21.24 0.73 2.29 楚科奇海陆架 R02 67.69°N,168.94°W 43.60 1.33 123.29 79.52 12.70 21.41 4.34 5.31 CC1 67.77°N,168.61°W 43.00 1.60 172.41 72.14 2.04 83.54 9.27 5.42 CC3 68.01°N,167.87°W 46.30 0.44 45.89 34.89 5.35 3.10 0.78 1.77 CC4 68.13°N,167.51°W 48.90 0.71* 105.36 65.40 0.00 36.67 0.00 3.29 CC6 68.19°N,167.31°W 36.30 1.58 6.94 4.31 1.80 0.38 0.23 0.22 SR05 68.62°N,168.86°W 52.00 1.22 61.17 29.46 7.11 21.52 0.00 3.08 C03 69.03°N,166.48°W 33.00 1.26* 50.17 23.93 2.49 17.37 4.54 1.83 C02 69.23°N,167.32°W 40.50 1.10 125.96 57.90 9.66 47.54 4.34 6.53 C01 69.41°N,168.16°W 44.50 1.33 78.24 34.48 12.40 23.02 3.84 4.50 R04 69.60°N,168.88°W 45.30 1.03 90.38 33.99 10.13 41.82 1.11 3.34 C04 70.84°N,166.89°W 39.40 0.94 51.88 23.28 7.28 16.71 1.57 3.04 R05 70.98°N,168.78°W 37.10 1.11 152.87 72.56 10.01 55.30 2.71 11.38 SR10 72.00°N,168.81°W 51.00 1.37 85.94 49.61 9.09 19.37 1.13 6.73 R06 72.00°N,168.98°W 51.35 1.88* 143.25 69.39 5.55 60.99 2.22 5.10 SR11 73.00°N,168.97°W 67.00 1.58 183.97 87.09 11.90 68.43 4.84 11.70 R07 73.00°N,168.97°W 73.36 1.97* 213.96 101.44 1.74 93.42 9.78 7.58 SR12 74.00°N,169.02°W 174.60 0.74 38.45 30.76 3.72 1.31 0.38 2.27 R08 74.00°N,169.00°W 82.69 1.50* 81.40 56.20 5.28 16.63 0.69 2.59 R09 74.61°N,169.03°W 190.00 1.09* 34.40 23.52 0.00 10.88 0.00 0.00 楚科奇海陆坡 C13 75.20°N,159.18°W 941.76 1.07* 59.02 44.88 0.93 10.49 0.00 2.71 R12 77.00°N,163.89°W 438.86 0.63* 81.68 57.53 0.44 21.62 0.00 2.08 加拿大海盆 SIC6 79.98°N,152.63°W 3 763.00 0.97* 85.13 73.81 0.00 6.85 0.00 4.47 SIC3 81.08°N,157.66°W 3 634.20 0.60* 92.17 66.68 0.47 21.02 0.00 4.01 注:SCSFA = 10:0 + 12:0 + 14:0 + 16:0 + 18:0;LCSFA = 20:0 + 22:0 + 24:0;MUFA= 14:1 + 16:1ω9 + 18:1 + 20:1 + 22:1;PUFA = 18:2 + 20:2 + 20:4 + 20:5 + 22:5 + 22:6;Odd FA = 11:0 + 13:0 + 15:0 + 15:1 + 17:0 + 17:1 + 21:0 + 23:0。*标注TOC数据引自文献[40]。 表 2 白令海及楚科奇海各站位沉积物脂肪酸组成(单位:μg/g)
Table 2. Individual FA compounds of the Bering Sea and the western Arctic Ocean surface sediments (unit: μg·g−1)
区域 站位 11:0 12:0 13:0 14:0 14:1 15:0 15:1 16:0 16:1ω9 17:0 17:1 18:0 18:1ω9 18:2 白令海盆 BL03 0.00 0.00 0.00 0.34 0.34 0.00 0.00 5.61 0.00 0.00 0.00 4.77 0.00 0.00 BL07 0.00 0.00 0.00 0.63 0.00 0.37 0.00 5.83 0.00 0.00 0.00 4.16 0.00 0.00 白令海陆架 BL12 0.00 0.00 0.00 2.38 0.80 0.44 0.00 7.72 6.36 0.00 0.00 3.24 2.71 0.00 BS01 0.00 0.00 0.00 3.71 0.00 0.91 0.00 8.58 12.17 0.22 0.53 2.53 2.38 0.45 BS02 0.00 0.00 0.00 8.45 1.38 2.40 0.00 31.66 2.69 0.00 0.00 6.81 0.00 0.00 BL14 0.00 0.30 0.00 2.97 0.00 1.44 0.00 7.57 0.00 0.65 0.00 2.23 0.00 0.00 BM07 0.00 0.00 0.00 2.81 0.00 0.00 0.00 9.63 2.43 0.42 0.00 1.89 0.54 0.00 BM04 0.00 0.21 0.22 5.53 0.00 1.77 0.00 16.60 10.87 0.57 0.00 2.58 2.75 0.00 BM05 0.00 0.38 0.00 8.74 0.00 2.14 0.00 23.58 0.23 0.90 0.00 2.98 0.47 0.00 BN08 0.00 0.00 0.00 3.16 0.00 0.77 0.00 13.55 18.58 0.67 0.31 3.67 2.65 0.00 楚科奇海陆架 R02 0.00 0.72 0.33 19.54 0.00 2.86 0.00 47.81 9.65 1.71 0.41 11.45 6.39 1.10 CC1 0.15 1.12 0.34 22.95 0.60 2.76 0.00 42.59 74.91 0.93 0.79 5.48 7.44 1.60 CC3 0.00 0.32 0.13 5.96 0.00 0.93 0.00 20.67 0.36 0.72 0.00 7.95 1.39 0.00 CC4 0.00 1.50 0.54 11.24 0.00 2.75 0.00 38.93 14.86 0.00 0.00 13.73 18.16 0.00 CC6 0.00 0.36 0.00 0.61 0.00 0.22 0.00 2.43 0.00 0.00 0.00 0.91 0.00 0.00 SR05 0.00 0.00 0.70 7.80 4.27 2.39 0.00 17.40 12.43 0.00 0.00 4.26 4.81 0.00 C03 0.00 0.00 0.00 3.97 1.05 1.32 0.00 15.06 11.32 0.51 0.00 4.90 5.01 0.73 C02 0.00 0.83 0.38 19.20 0.00 3.95 0.00 34.35 44.48 1.00 1.21 3.51 3.06 3.54 C01 0.00 0.69 0.36 7.99 0.00 2.24 0.00 21.26 15.02 1.05 0.00 4.53 6.53 0.00 R04 0.00 0.00 0.00 6.57 0.00 1.37 0.00 22.34 37.56 0.43 0.68 5.08 3.29 0.00 C04 0.00 0.00 0.00 4.76 0.00 1.37 0.00 15.81 12.93 0.46 0.40 2.70 2.34 0.00 R05 0.00 0.52 0.34 16.94 0.00 5.38 0.00 47.89 47.78 2.05 3.04 7.21 4.12 1.03 R06 0.00 1.08 0.00 19.36 0.00 5.10 0.00 43.46 47.72 0.00 0.00 5.48 6.28 0.91 SR10 0.00 0.57 0.38 11.68 0.00 3.42 0.00 31.23 14.85 1.76 0.37 6.12 3.99 0.00 SR11 0.86 2.42 0.82 28.19 0.69 6.50 0.00 51.70 54.09 2.01 1.52 4.78 9.31 0.91 R07 0.00 1.64 0.77 24.78 0.00 5.62 0.00 67.49 76.99 1.19 0.00 7.53 13.95 9.78 SR12 0.00 0.00 0.00 1.51 0.00 0.00 0.00 15.79 0.24 0.77 0.00 13.46 1.07 0.00 R08 0.00 1.19 0.55 8.28 0.00 1.81 0.00 35.03 7.28 0.00 0.23 11.70 4.87 0.00 R09 0.00 0.00 0.00 5.42 0.00 0.00 0.00 16.63 8.78 0.00 0.00 1.47 2.10 0.00 楚科奇海陆坡 C13 0.00 0.35 0.26 3.80 0.00 0.00 1.72 26.62 1.47 0.73 0.00 14.11 7.99 0.00 R12 0.00 0.74 0.36 3.59 0.00 1.27 0.00 31.87 1.16 0.45 0.00 21.33 18.61 0.00 加拿大海盆 SIC6 0.00 1.56 0.76 8.07 0.00 2.97 0.00 45.35 0.82 0.74 0.00 18.84 6.02 0.00 SIC3 0.00 0.40 0.37 6.14 0.00 2.81 0.00 40.54 1.86 0.83 0.00 19.60 16.48 0.00 表 3 主成分分析结果
Table 3. PCA results
总计 方差/% 累积/% PC1 11.25 45.00 45.00 PC2 4.75 19.00 64.00 PC3 2.30 9.19 73.19 PC4 1.40 5.61 78.80 PC5 1.14 4.54 83.34 表 4 各站位不同来源脂肪酸百分比及硅藻指数
Table 4. Percentage of FA sources and diatom index of the Bering Sea and the western Arctic Ocean surface sediments
站位 TFA/ μg·g−1 海源脂肪酸 /% 陆源脂肪酸 /% 细菌脂肪酸 /% 硅藻指数(16:1ω9 / 16:0) BL03 13.70 82.46 14.42 3.12 0.00 BL07 16.30 68.21 25.53 6.26 0.00 BL12 30.39 84.42 14.14 1.45 0.82 BS01 34.71 88.38 5.13 4.79 1.42 BS02 63.51 82.10 14.12 3.77 0.09 BL14 16.02 81.49 5.43 13.08 0.00 BM07 20.55 88.39 8.58 2.05 0.25 BM04 45.65 84.43 9.98 5.60 0.65 BM05 44.41 85.71 7.44 6.85 0.01 BN08 51.00 83.04 12.47 4.49 1.37 R02 123.29 85.39 10.30 4.31 0.20 CC1 172.41 95.67 1.18 3.14 1.76 CC3 45.89 84.49 11.65 3.85 0.02 CC4 105.36 96.88 0.00 3.12 0.38 CC6 6.94 70.88 26.00 3.13 0.00 SR05 61.17 83.34 11.62 5.04 0.71 C03 50.17 91.38 4.97 3.66 0.75 C02 125.96 87.14 7.67 5.19 1.29 C01 78.24 78.40 15.85 5.75 0.71 R04 90.38 85.10 11.20 3.69 1.68 C04 51.88 80.09 14.04 5.87 0.82 R05 152.87 85.41 6.55 7.45 1.00 SR10 85.94 81.59 10.58 7.84 0.48 R06 143.25 92.57 3.88 3.56 1.10 SR11 183.97 87.17 6.47 6.36 1.05 R07 213.96 95.64 0.81 3.54 1.14 SR12 38.45 84.41 9.69 5.90 0.02 R08 81.40 90.33 6.49 3.18 0.21 R09 34.40 100.00 0.00 0.00 0.53 C13 59.02 93.82 1.58 4.59 0.06 R12 81.68 96.91 0.54 2.55 0.04 SIC6 85.13 94.75 0.00 5.25 0.02 SIC3 92.17 95.14 0.51 4.35 0.05 -
[1] Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic[J]. Progress in Oceanography, 2006, 71(2/4): 331−361. [2] 赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985−995.Zhao Jinping, Shi Jiuxin, Wang Zhaomin, et al. Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science, 2015, 30(9): 985−995. [3] Zhuang Yanpei, Jin Haiyan, Chen Jianfang, et al. Nutrient and phytoplankton dynamics driven by the Beaufort Gyre in the western Arctic Ocean during the period 2008-2014[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 137: 30−37. doi: 10.1016/j.dsr.2018.05.002 [4] Zhuang Yanpei, Li Hongliang, Jin Haiyan, et al. Observation of nitrate deficit along transects across the Canada Basin after major sea-ice loss[J]. Polar Science, 2019, 21: 224−227. doi: 10.1016/j.polar.2019.03.001 [5] Serreze M C, Holland M M, Stroeve J. Perspectives on the Arctic's shrinking sea-ice cover[J]. Science, 2007, 315(5818): 1533−1536. doi: 10.1126/science.1139426 [6] Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501. [7] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): L01703. [8] Lenton T M, Held H, Kriegler E, et al. Tipping elements in the Earth's climate system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 1786−1793. doi: 10.1073/pnas.0705414105 [9] Meier W N, Hovelsrud G K, van Oort B E H, et al. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity[J]. Reviews of Geophysics, 2014, 52(3): 185−217. doi: 10.1002/2013RG000431 [10] Belicka L L, Macdonald R W, Harvey H R. Sources and transport of organic carbon to shelf, slope, and basin surface sediments of the Arctic Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49(8): 1463−1483. doi: 10.1016/S0967-0637(02)00031-6 [11] Lalande C, Bélanger S, Fortier L. Impact of a decreasing sea ice cover on the vertical export of particulate organic carbon in the northern Laptev Sea, Siberian Arctic Ocean[J]. Geophysical Research Letters, 2009, 36(21): L21604. doi: 10.1029/2009GL040570 [12] 陈建芳, 金海燕, 李宏亮, 等. 北极快速变化对北冰洋碳汇机制和过程的影响[J]. 科学通报, 2015, 60(35): 3406−3416. doi: 10.1360/N972014-00397Chen Jianfang, Jin Haiyan, Li Hongliang, et al. Carbon sink mechanism and processes in the Arctic Ocean under Arctic rapid change[J]. Chinese Science Bulletin, 2015, 60(35): 3406−3416. doi: 10.1360/N972014-00397 [13] Stein R, Macdonald R W. Organic carbon budget: Arctic Ocean vs. global ocean[M]//Stein R, MacDonald R W. The Organic Carbon Cycle in the Arctic Ocean. Berlin, Heidelberg: Springer, 2004: 315−322. [14] Walsh J J, McRoy C P. Ecosystem analysis in the southeastern Bering Sea[J]. Continental Shelf Research, 1986, 5(1/2): 259−288. [15] 陈敏, 黄奕普, 郭劳动, 等. 北冰洋: 生物生产力的"沙漠"?[J]. 科学通报, 2002, 47(12): 1037−1040. doi: 10.1007/BF02907578Chen Min, Huang Yipu, Guo Laodong, et al. Biological productivity and carbon cycling in the Arctic Ocean[J]. Chinese Science Bulletin, 2002, 47(12): 1037−1040. doi: 10.1007/BF02907578 [16] Arrigo K R, van Dijken G L. Continued increases in Arctic Ocean primary production[J]. Progress in Oceanography, 2015, 136: 60−70. doi: 10.1016/j.pocean.2015.05.002 [17] Woodgate R A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data[J]. Progress in Oceanography, 2018, 160: 124−154. doi: 10.1016/j.pocean.2017.12.007 [18] Li W K W, McLaughlin F A, Lovejoy C, et al. Smallest algae thrive as the Arctic Ocean freshens[J]. Science, 2009, 326(5952): 539. doi: 10.1126/science.1179798 [19] Grebmeier J M, Frey K E, Cooper L W, et al. Trends in benthic macrofaunal populations, seasonal sea ice persistence, and bottom water temperatures in the Bering Strait region[J]. Oceanography, 2018, 31(2): 136−151. [20] Grebmeier J M, Overland J E, Moore S E, et al. A major ecosystem shift in the northern Bering Sea[J]. Science, 2006, 311(5766): 1461−1464. doi: 10.1126/science.1121365 [21] Jin Haiyan, Chen Jianfang, Weng Huanxin, et al. Variations in paleoproductivity and the environmental implications over the past six decades in the Changjiang Estuary[J]. Acta Oceanologica Sinica, 2010, 29(3): 38−45. doi: 10.1007/s13131-010-0035-x [22] Jia Guodong, Li Zhiyang. Easterly denitrification signal and nitrogen fixation feedback documented in the western Pacific sediments[J]. Geophysical Research Letters, 2011, 38(24): L24605. [23] 张海峰, 王汝建, 孙烨忱, 等. 白令海北部表层沉积物中的生源组分分布特征及其古海洋学意义[J]. 海洋地质与第四纪地质, 2011, 31(5): 79−87.Zhang Haifeng, Wang Rujian, Sun Yechen, et al. Distribution pattern of biogenic components in surface sediments of the northern Bering Sea and their paleoceanographic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 79−87. [24] 李宏亮, 陈建芳, 金海燕, 等. 楚科奇海表层沉积物的生源组分及其对碳埋藏的指示意义[J]. 海洋学报, 2008, 30(1): 165−171.Li Hongliang, Chen Jianfang, Jin Haiyan, et al. Biogenic constituents of surface sediments in the Chukchi Sea: implications for organic carbon burying efficiency[J]. Haiyang Xuebao, 2008, 30(1): 165−171. [25] 王斌, 朱庆梅, 庄燕培, 等. 北极楚科奇海沉积生物硅的分布及其硅质泵过程初探[J]. 矿物岩石地球化学通报, 2015, 34(6): 1131−1141. doi: 10.3969/j.issn.1007-2802.2015.06.006Wang Bin, Zhu Qingmei, Zhuang Yanpei, et al. Biogenic silica distribution in Chukchi Sea and its implications for silicate pump process[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(6): 1131−1141. doi: 10.3969/j.issn.1007-2802.2015.06.006 [26] 张扬, 季仲强, 庄燕培, 等. 绿素对西北冰洋海源有机碳埋藏的指示意义[J]. 矿物岩石地球化学通报, 2015, 34(6): 1123−1130. doi: 10.3969/j.issn.1007-2802.2015.06.005Zhang Yang, Ji Zhongqiang, Zhuang Yanpei, et al. The implication of chlorin to marine-derived organic matter in northwest Arctic Ocean[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(6): 1123−1130. doi: 10.3969/j.issn.1007-2802.2015.06.005 [27] 白有成, 陈建芳, 李宏亮, 等. 楚科奇海附近表层沉积物中类脂生物标志物的分布特征和意义[J]. 海洋学报, 2010, 32(2): 106−117.Bai Youcheng, Chen Jianfang, Li Hongliang, et al. The distribution of lipids biomarkers in the surface sediments of the Chukchi Sea and their implications[J]. Haiyang Xuebao, 2010, 32(2): 106−117. [28] Ruan Jiaping, Huang Yuanhui, Shi Xuefa, et al. Holocene variability in sea surface temperature and sea ice extent in the northern Bering Sea: a multiple biomarker study[J]. Organic Geochemistry, 2017, 113: 1−9. doi: 10.1016/j.orggeochem.2017.08.006 [29] Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. Pacific inflow control on phytoplankton community in the eastern Chukchi Shelf during summer[J]. Continental Shelf Research, 2016, 129: 23−32. doi: 10.1016/j.csr.2016.09.010 [30] Jin Haiyan, Zhuang Yanpei, Li Hongliang, et al. Response of phytoplankton community to different water types in the western Arctic Ocean surface water based on pigment analysis in summer 2008[J]. Acta Oceanologica Sinica, 2017, 36(8): 109−121. doi: 10.1007/s13131-017-1033-z [31] Grebmeier J M, Bluhm B A, Cooper L W, et al. Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic[J]. Progress in Oceanography, 2015, 136: 92−114. doi: 10.1016/j.pocean.2015.05.006 [32] Dalsgaard J, John M S, Kattner G, et al. Fatty acid trophic markers in the pelagic marine environment[J]. Advances in Marine Biology, 2003, 46: 225−340. doi: 10.1016/S0065-2881(03)46005-7 [33] Yunker M B, Belicka L L, Harvey H R, et al. Tracing the inputs and fate of marine and terrigenous organic matter in Arctic Ocean sediments: a multivariate analysis of lipid biomarkers[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2005, 52(24/26): 3478−3508. [34] Niggemann J, Schubert C J. Fatty acid biogeochemistry of sediments from the Chilean coastal upwelling region: sources and diagenetic changes[J]. Organic Geochemistry, 2006, 37(5): 626−647. doi: 10.1016/j.orggeochem.2005.11.004 [35] de Carvalho C C C R, Caramujo M J. The various roles of fatty acids[J]. Molecules, 2018, 23(10): 2583. doi: 10.3390/molecules23102583 [36] Belicka L L, Macdonald R W, Yunker M B, et al. The role of depositional regime on carbon transport and preservation in Arctic Ocean sediments[J]. Marine Chemistry, 2004, 86(1/2): 65−88. [37] Budge S M, Iverson S J, Koopman H N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation[J]. Marine Mammal Science, 2006, 22(4): 759−801. doi: 10.1111/j.1748-7692.2006.00079.x [38] Folch J, Lees M, Sloane Stanley G H. A simple method for the isolation and purification of total lipides from animal tissues[J]. Journal of Biological Chemistry, 1957, 226(1): 497−509. [39] Yunker M B, Macdonald R W, Veltkamp D J, et al. Terrestrial and marine biomarkers in a seasonally ice-covered Arctic estuary—integration of multivariate and biomarker approaches[J]. Marine Chemistry, 1995, 49(1): 1−50. doi: 10.1016/0304-4203(94)00057-K [40] Li Zhongqiao, Wang Xinyi, Jin Haiyan, et al. Variations in organic carbon loading of surface sediments from the shelf to the slope of the Chukchi Sea, Arctic Ocean[J]. Acta Oceanologica Sinica, 2017, 36(8): 131−136. doi: 10.1007/s13131-017-1026-y [41] 李凤, 贺行良, 徐刚, 等. 东海近岸表层沉积物中脂肪酸与脂肪醇的组成以及分布与来源[J]. 海洋地质与第四纪地质, 2016, 36(4): 13−18.Li Feng, He Xingliang, Xu Gang, et al. Composition, distribution and source of fatty acids and fatty alcohols in marine surface sediments of the East China Sea[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 13−18. [42] 朱小畏, 茅晟懿, 吴能友, 等. 神狐海域Site4B表层沉积物中脂肪酸组成及其碳同位素分布特征[J]. 海洋学报, 2013, 35(6): 75−85.Zhu Xiaowei, Mao Shengyi, Wu Nengyou, et al. Molecular distributions and carbon isotopic compositions of fatty acids in the surface sediments from Shenhu Area, northern South China Sea[J]. Haiyang Xuebao, 2013, 35(6): 75−85. [43] Kirchman D L, Morán X A G, Ducklow H. Microbial growth in the polar oceans—role of temperature and potential impact of climate change[J]. Nature Reviews Microbiology, 2009, 7(6): 451−459. doi: 10.1038/nrmicro2115 [44] 刘子琳, 陈建芳, 刘艳岚, 等. 2008年夏季白令海粒度分级叶绿素a和初级生产力[J]. 海洋学报, 2011, 33(3): 148−157.Liu Zilin, Chen Jianfang, Liu Yanlan, et al. The size-fractionated chlorophyll a concentration and primary productivity in the Bering Sea in the summer of 2008[J]. Haiyang Xuebao, 2011, 33(3): 148−157. [45] 刘子琳, 陈建芳, 张涛, 等. 楚科奇海及其海台区粒度分级叶绿素a与初级生产力[J]. 生态学报, 2007, 27(12): 4953−4962. doi: 10.3321/j.issn:1000-0933.2007.12.003Liu Zilin, Chen Jianfang, Zhang Tao, et al. The size-fractionated chlorophyll a concentration and primary productivity in the Chukchi Sea and its northern Chukchi Plateau[J]. Acta Ecologica Sinica, 2007, 27(12): 4953−4962. doi: 10.3321/j.issn:1000-0933.2007.12.003 [46] Honjo S, Krishfield R A, Eglinton T I, et al. Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise[J]. Progress in Oceanography, 2010, 85(3/4): 137−170. [47] Zhuang Yanpei, Jin Haiyan, Gu Fan, et al. Composition of algal pigments in surface freshen layer after ice melt in the central Arctic[J]. Acta Oceanologica Sinica, 2017, 36(8): 122−130. doi: 10.1007/s13131-017-1024-0 [48] 孙烨忱, 王汝建, 肖文申, 等. 西北冰洋表层沉积物中生源和陆源粗组分及其沉积环境[J]. 海洋学报, 2011, 33(2): 103−114.Sun Yechen, Wang Rujian, Xiao Wenshen, et al. Biogenic and terrigenous coarse fractions in surface sediments of the western Arctic Ocean and their sedimentary environments[J]. Haiyang Xuebao, 2011, 33(2): 103−114. [49] Ji Zhongqiang, Jin Haiyan, Stein R, et al. Distribution and sources of organic matter in surface sediments of the northern Bering and Chukchi Seas by using bulk and Tetraether proxies[J]. Journal of Ocean University of China, 2019, 18(3): 563−572. doi: 10.1007/s11802-019-3869-7 [50] Tesi T, Semiletov I, Hugelius G, et al. Composition and fate of terrigenous organic matter along the Arctic land–ocean continuum in East Siberia: insights from biomarkers and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2014, 133: 235−256. doi: 10.1016/j.gca.2014.02.045 [51] Søreide J E, Leu E, Berge J, et al. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic[J]. Global Change Biology, 2010, 16(11): 3154−3163.