留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底地下水排放对典型红树林蓝碳收支的影响

王亚丽 张芬芬 陈小刚 李林蔚 王希龙 劳燕玲 杜金洲

王亚丽,张芬芬,陈小刚,等. 海底地下水排放对典型红树林蓝碳收支的影响−以广西珍珠湾为例[J]. 海洋学报,2020,42(10):37–46 doi: 10.3969/j.issn.0253-4193.2020.10.004
引用本文: 王亚丽,张芬芬,陈小刚,等. 海底地下水排放对典型红树林蓝碳收支的影响−以广西珍珠湾为例[J]. 海洋学报,2020,42(10):37–46 doi: 10.3969/j.issn.0253-4193.2020.10.004
Wang Yali,Zhang Fenfen,Chen Xiaogang, et al. Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: A case study from the Zhenzhu Bay, Guangxi[J]. Haiyang Xuebao,2020, 42(10):37–46 doi: 10.3969/j.issn.0253-4193.2020.10.004
Citation: Wang Yali,Zhang Fenfen,Chen Xiaogang, et al. Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: A case study from the Zhenzhu Bay, Guangxi[J]. Haiyang Xuebao,2020, 42(10):37–46 doi: 10.3969/j.issn.0253-4193.2020.10.004

海底地下水排放对典型红树林蓝碳收支的影响——以广西珍珠湾为例

doi: 10.3969/j.issn.0253-4193.2020.10.004
详细信息
    作者简介:

    王亚丽(1994-),女,河南省长葛市人,主要从事近海生物地球化学研究。E-mail:51173904023@stu.ecnu.edu.cn

    通讯作者:

    张芬芬,副教授,主要从事碳循环、海洋生物地球化学研究。E-mail: ffzhang@sklec.ecnu.edu.cn

  • 中图分类号: P714+.4;P734.2+4

Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: A case study from the Zhenzhu Bay, Guangxi

  • 摘要: 海底地下水排放(Submarine Groundwater Discharge,SGD)是陆海相互作用的重要表现形式之一,其携带的物质对近岸海域生源要素的收支有重要影响。本文利用222Rn示踪技术估算了我国典型红树林海湾—广西珍珠湾在2019年枯季(1月)SGD携带的碳通量。调查发现,地下水中222Rn活度、溶解无机碳(DIC)和溶解有机碳(DOC)的平均浓度均高于河水和湾内表层海水。利用222Rn质量平衡模型估算得到珍珠湾SGD速率为(0.36±0.36) m/d,SGD输入到珍珠湾的DIC和DOC通量分别为(2.41±2.63)×107 mol/d和(1.96±2.20)×106 mol/d。珍珠湾溶解碳的源汇收支表明,SGD携带的DIC和DOC分别占珍珠湾总DIC和总DOC来源的91%和89%。因此,SGD携带的DIC和DOC是珍珠湾DIC和DOC的主要来源,是海岸带蓝碳收支和生物地球化学循环过程中的重要组成。

     

  • 图  研究区域(a),采样站位(b)和连续观测站现场图(c)

    Figure  1.  Study area (a), sampling stations (b), and the continuous monitoring system in the field (c)

    图  沿海地区SGD通量的222Rn质量平衡模型

    红色箭头代表源项,黑色箭头代表汇项;修改自Burnett和Dulaiova[28]

    Figure  2.  The conceptual model of the 222Rn mass balance used to estimate submarine groundwater discharge in coastal zones

    Red arrows: sources, black arrows: sinks; modified from Burnett and Dulaiova[28]

    图  连续观测期间222Rn活度、温度、盐度、DIC和DOC浓度及水深随时间变化

    Figure  3.  Temporal variation of 222Rn activities, temperature, salinity, DIC and DOC concentrations versus water depth during the time series observation

    图  连续观测期间222Rn的净通量Fnet(灰色柱状图)和混合损失Fmix(蓝色虚线)随时间变化

    Figure  4.  Net 222Rn flux (rectangles) and mixing loss of 222Rn (dotted line) versus time based on continuous 222Rn observation

    图  珍珠湾DIC(a)和DOC(b)收支

    Figure  5.  DIC (a) and DOC (b) budgets in the Zhenzhu Bay

    表  1  珍珠湾沿岸地下水和河水的盐度,222Rn活度,DIC和DOC浓度

    Table  1.   The salinity, 222Rn activities, DIC and DOC concentrations in groundwater and river water collected along the coast of the Zhenzhu Bay

    站位 经纬度 盐度 水深/m 离海距离/m 222Rn/Bq·m−3 DOC/mol·m−3 DIC/mol·m−3
    PW1 21.617 8°N,108.252 8°E 27.0 0.5 0 1 083±175 0.16 1.50
    PW2 21.584 4°N,108.137 8°E 28.8 0.5 0 1 064±169 0.19 1.23
    PW3 21.559 2°N,108.140 0°E 19.3 0.6 0 2 410±256 0.06 0.82
    PW4 21.053 2°N,108.186 4°E 1.0 0 3 565±292 0.08 2.37
    GW 21.508 6°N,108.221 4°E 0.3 1.5 100 8 050±472 0.08 1.02
    RW 21.594 2°N,108.221 4°E 0.6 640±122 0.08 0.13
      注:−表示无数据。
    下载: 导出CSV

    表  2  2019年1月珍珠湾222Rn的源汇收支

    Table  2.   The sources and sinks of 222Rn in the Zhenzhu Bay during January 2019

    222Rn通量/Bq·m−2·h−1 各项贡献
    源项
    河流输入 0.24±0.04 0.30%
    涨潮输入 29.52±14.09 37.00%
    溶解226Ra贡献 0.09±0.05 0.11%
    底部沉积物扩散 0.76±0.01 0.95%
    SGD输入 49.16±49.09 61.63%
    汇项
    退潮输出 38.83±21.91 43.27%
    大气逃逸 1.32±0.79 1.47%
    222Rn衰变损失 0.02±0.01 0.02%
    混合损失 49.57±37.39 55.24%
    下载: 导出CSV

    表  3  全球典型红树林生态系统SGD速率及其携带的DIC和DOC通量

    Table  3.   SGD rates and associated DIC and DOC fluxes from previous study in typical mangroves ecosystems worldwide

    研究区域 SGD
    /cm·d−1
    SGD输送的DIC
    通量/mol·m−2·d−1
    SGD输送的DOC
    通量/mol·m−2·d−1
    澳大利亚摩尔顿湾[7] 0.25 0.024
    澳大利亚华斯顿和加拿曼湾[16] 6.7~27 0.13~0.45 0~0.025
    澳大利亚摩尔顿
    [14]
    4.4 0.16 0.036
    澳大利亚珊瑚溪[3] 35.5
    澳大利亚哈特角河口[15] 47 0.69 0.54
    中国广西茅尾海[8] 20~36 0.25~0.70 0.25~0.31
    越南芹椰县红树林
    潮溪[40]
    3.1~7.1 0.35~0.68 0.021~0.068
    帕劳巴贝达奥普火山岛
    红树林溪[41]
    3.3 0.079 0.035
    6.2 0.01 0.008
    中国广西珍珠湾 36 0.50 0.04
      注:−表示无数据。
    下载: 导出CSV
  • [1] Mcleod E, Chmura G L, Bouillon S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552−560. doi: 10.1890/110004
    [2] Bouillon S, Borges A V, Castañeda-Moya E, et al. Mangrove production and carbon sinks: a revision of global budget estimates[J]. Global Biogeochemical Cycles, 2008, 22(2): GB2013.
    [3] Tait D R, Maher D T, Macklin P A, et al. Mangrove pore water exchange across a latitudinal gradient[J]. Geophysical Research Letters, 2016, 43(7): 3334−3341. doi: 10.1002/2016GL068289
    [4] Sippo J Z, Maher D T, Tait D R, et al. Mangrove outwelling is a significant source of oceanic exchangeable organic carbon[J]. Limnology and Oceanography Letters, 2017, 2(1): 1−8. doi: 10.1002/lol2.10031
    [5] Alongi D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6(1): 195−219. doi: 10.1146/annurev-marine-010213-135020
    [6] Kelleway J J, Saintilan N, Macreadie P I, et al. Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes[J]. Ecosystems, 2016, 19(5): 865−880. doi: 10.1007/s10021-016-9972-3
    [7] Maher D T, Santos I R, Golsby-Smith L, et al. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink?[J]. Limnology and Oceanography, 2013, 58(2): 475−488. doi: 10.4319/lo.2013.58.2.0475
    [8] Chen Xiaogang, Zhang Fenfen, Lao Yanling, et al. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6962−6979. doi: 10.1029/2018JC014448
    [9] Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2): 3−33. doi: 10.1023/B:BIOG.0000006066.21240.53
    [10] Moore W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2: 59−88. doi: 10.1146/annurev-marine-120308-081019
    [11] Wang Guizhi, Wang Zhangyong, Zhai Weidong, et al. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River Estuary, China[J]. Geochimica et Cosmochimica Acta, 2015, 149: 103−114. doi: 10.1016/j.gca.2014.11.001
    [12] Santos I R, Beck M, Brumsack H J, et al. Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: Insights from coupled 222Rn and pCO2 observations in the German Wadden Sea[J]. Marine Chemistry, 2015, 171: 10−20. doi: 10.1016/j.marchem.2015.02.005
    [13] Chen Xiaogang, Ye Qi, Du Jinzhou, et al. Bacterial and archaeal assemblages from two size fractions in submarine groundwater near an industrial zone[J]. Water, 2019, 11(6): 1261. doi: 10.3390/w11061261
    [14] Stewart B T, Santos I R, Tait D R, et al. Submarine groundwater discharge and associated fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated via radium isotopes[J]. Marine Chemistry, 2015, 174: 1−12. doi: 10.1016/j.marchem.2015.03.019
    [15] Sadat-Noori M, Maher D T, Santos I R. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary[J]. Estuaries and Coasts, 2016, 39(3): 639−656. doi: 10.1007/s12237-015-0042-4
    [16] Faber P A, Evrard V, Woodland R J, et al. Pore-water exchange driven by tidal pumping causes alkalinity export in two intertidal inlets[J]. Limnology and Oceanography, 2014, 59(5): 1749−1763. doi: 10.4319/lo.2014.59.5.1749
    [17] Oh Y H, Lee Y W, Park S R, et al. Importance of dissolved organic carbon flux through submarine groundwater discharge to the coastal ocean: results from Masan Bay, the southern coast of Korea[J]. Journal of Marine Systems, 2017, 173: 43−48. doi: 10.1016/j.jmarsys.2017.03.013
    [18] Wang Xilong, Du Jinzhou. Submarine groundwater discharge into typical tropical lagoons: a case study in Eastern Hainan Island, China[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11): 4366−4382. doi: 10.1002/2016GC006502
    [19] Xiao Kai, Li Hailong, Shananan M, et al. Coastal water quality assessment and groundwater transport in a subtropical mangrove swamp in Daya Bay, China[J]. Science of the Total Environment, 2019, 646: 1419−1432. doi: 10.1016/j.scitotenv.2018.07.394
    [20] Chen Xiaogang, Lao Yanling, Wang Jinlong, et al. Submarine groundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 932−951. doi: 10.1002/2017GC007330
    [21] 赖廷和, 何斌源, 史小芳, 等. 广西珍珠湾桐花树群落凋落物碳输出动态研究[J]. 泉州师范学院学报, 2015, 33(6): 1−7. doi: 10.3969/j.issn.1009-8224.2015.06.001

    Lai Tinghe, He Binyuan, Shi Xiaofang, et al. Carbon output through litter fall in the Aegiceras corniculatum mangrove community in Zhenzhu Bay of Guangxi, China[J]. Journal of Quanzhou Normal University, 2015, 33(6): 1−7. doi: 10.3969/j.issn.1009-8224.2015.06.001
    [22] 黄玥, 黄元辉. 广西珍珠湾表层沉积硅藻分布特征[J]. 海洋科学进展, 2016, 34(3): 411−420.

    Huang Yue, Huang Yuanhui. Characterastics of surface sediments diatom distribution in Zhenzhu Bay of Guangxi[J]. Advances in Marine Science, 2016, 34(3): 411−420.
    [23] Schubert M, Paschke A, Lieberman E, et al. Air-water partitioning of 222Rn and its dependence on water temperature and salinity[J]. Environmental Science & Technology, 2012, 46(7): 3905−3911.
    [24] Charette M A, Allen M C. Precision ground water sampling in coastal aquifers using a direct-push, Shielded-Screen Well-Point System[J]. Groundwater Monitoring & Remediation, 2006, 26(2): 87−93.
    [25] Moore W S, Arnold R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter[J]. Journal of Geophysical Research: Oceans, 1996, 101(C1): 1321−1329. doi: 10.1029/95JC03139
    [26] Peterson R N, Burnett W C, Glenn C R, et al. Quantification of point-source groundwater discharges to the ocean from the shoreline of the Big Island, Hawaii[J]. Limnology and Oceanography, 2009, 54(3): 890−904. doi: 10.4319/lo.2009.54.3.0890
    [27] Martens C S, Kipphut G W, Klump J V. Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements[J]. Science, 1980, 208(4441): 285−288. doi: 10.1126/science.208.4441.285
    [28] Burnett W C, Dulaiova H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1/2): 21−35.
    [29] Zhang Yan, Li Hailong, Wang Xuejing, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn[J]. Journal of Hydrology, 2016, 533: 103−113. doi: 10.1016/j.jhydrol.2015.11.027
    [30] Santos I R, Maher D T, Larkin R, et al. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands[J]. Limnology and Oceanography, 2019, 64(3): 996−1013. doi: 10.1002/lno.11090
    [31] 杨卫东. 广西北部湾经济区水资源及其变化趋势分析[C]//第五届广西青年学术年会论文集. 南宁: 广西壮族自治区科协, 2010.

    Yang Weidong. Analysis of water resources and its Changing trend in economic zone of Beibu Gulf, Guangxi[C]//The Fifth Guangxi Youth Academic Conference. Nanning: Guangxi Association for Science and Technology, 2010.
    [32] Moore W S, Blanton J O, Joye S B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research: Oceans, 2006, 111(C9): C09006.
    [33] 罗浩. 镭同位素示踪钦州湾海底地下水排放及其营养盐输送通量[D]. 上海: 华东师范大学, 2018.

    Luo Hao. Study of submarine groundwater discharge by Ra and its associated nutrient fluxes into the Qinzhou Bay, China[D]. Shanghai: East China Normal University, 2018.
    [34] MacIntyre S, Wanninkhof R, Chanton J P. Trace gas exchange across the air-water interface in freshwater and coastal marine environments[C]//Matson P A, Harriss R C. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Oxford, England: Blackwell, 1995.
    [35] Lambert M J, Burnett W C. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements[J]. Biogeochemistry, 2003, 66(1/2): 55−73. doi: 10.1023/B:BIOG.0000006057.63478.fa
    [36] Corbett D R, Burnett W C, Cable P H, et al. A multiple approach to the determination of radon fluxes from sediments[J]. Journal of Radioanalytical and Nuclear Chemistry, 1998, 236(1/2): 247−253.
    [37] Burnett W C, Peterson R, Moore W S, et al. Radon and radium isotopes as tracers of submarine groundwater discharge—results from the Ubatuba, Brazil SGD assessment intercomparison[J]. Estuarine, Coastal and Shelf Science, 2008, 76(3): 501−511. doi: 10.1016/j.ecss.2007.07.027
    [38] Tse K C, Jiao J J. Estimation of submarine groundwater discharge in plover cove, Tolo harbour, Hong Kong by 222Rn[J]. Marine Chemistry, 2008, 111(3/4): 160−170.
    [39] Wang Xuejing, Li Hailong, Yang Jinzhong, et al. Nutrient inputs through submarine groundwater discharge in an embayment: a radon investigation in Daya Bay, China[J]. Journal of Hydrology, 2017, 551: 784−792. doi: 10.1016/j.jhydrol.2017.02.036
    [40] Taillardat P, Willemsen P, Marchand C, et al. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio, Vietnam)[J]. Journal of Hydrology, 2018, 563: 303−318. doi: 10.1016/j.jhydrol.2018.05.042
    [41] Call M, Sanders C J, Macklin P A, et al. Carbon outwelling and emissions from two contrasting mangrove creeks during the monsoon storm season in Palau, Micronesia[J]. Estuarine, Coastal and Shelf Science, 2019, 218: 340−348. doi: 10.1016/j.ecss.2019.01.002
    [42] Tait D R, Maher D T, Sanders C J, et al. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves[J]. Geochimica et Cosmochimica Acta, 2017, 200: 295−309. doi: 10.1016/j.gca.2016.12.024
    [43] Robinson C E, Xin Pei, Santos I R, et al. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: controls on submarine groundwater discharge and chemical inputs to the ocean[J]. Advances in Water Resources, 2018, 115: 315−331. doi: 10.1016/j.advwatres.2017.10.041
    [44] Bokuniewicz H, Taniguchi M, Ishitoibi T, et al. Direct measurements of submarine groundwater discharge (SGD) over a fractured rock aquifer in Flamengo Bay Brazil[J]. Estuarine, Coastal and Shelf Science, 2008, 76(3): 466−472. doi: 10.1016/j.ecss.2007.07.047
    [45] Santos I R, Lechuga-Deveze C, Peterson R N, et al. Tracing submarine hydrothermal inputs into a coastal bay in Baja California using radon[J]. Chemical Geology, 2011, 282(1/2): 1−10.
    [46] Gordon D C, Boudreau P R, Mann K H, et al. LOICZ Biogeochemical Modelling Guidelines[M]. Texel, the Netherlands: LOICZ, 1996.
    [47] Jiang Zengjie, Li Jiaqi, Qiao Xudong, et al. The budget of dissolved inorganic carbon in the shellfish and seaweed integrated mariculture area of Sanggou Bay, Shandong, China[J]. Aquaculture, 2015, 446: 167−174. doi: 10.1016/j.aquaculture.2014.12.043
    [48] 吴易超. 北部湾初级生产力的时空格局与粒级结构[D]. 厦门: 厦门大学, 2008.

    Wu Yichao. The temporal and spatial distribution patterns and size-fractioned structure of primary productivity in Beibu Gulf[D]. Xiamen: Xiamen University, 2008.
    [49] Sanford L P, Boicourt W C, Rives S R. Model for estimating tidal flushing of small embayments[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1992, 118(6): 635−654. doi: 10.1061/(ASCE)0733-950X(1992)118:6(635)
    [50] Zhai Weidong, Dai Minhan, Cai Weijun, et al. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn[J]. Marine Chemistry, 2005, 96(1/2): 87−97.
    [51] Bauer J E, Cai Weijun, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478): 61−70. doi: 10.1038/nature12857
    [52] 周晨昊, 毛覃愉, 徐晓, 等. 中国海岸带蓝碳生态系统碳汇潜力的初步分析[J]. 中国科学: 生命科学, 2016, 46(4): 475−486. doi: 10.1360/N052016-00105

    Zhou Chenhao, Mao Qinyu, Xu Xiao, et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone[J]. Scientia Sinica Vitae, 2016, 46(4): 475−486. doi: 10.1360/N052016-00105
    [53] 章海波, 骆永明, 刘兴华, 等. 海岸带蓝碳研究及其展望[J]. 中国科学: 地球科学, 2015, 45(11): 1641−1648. doi: 10.1360/zd2015-45-11-1641

    Zhang Haibo, Luo Yongming, Liu Xinghua, et al. Current researches and prospects on the coastal blue carbon[J]. Scientia Sinica: Terrae, 2015, 45(11): 1641−1648. doi: 10.1360/zd2015-45-11-1641
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  321
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-02-13
  • 发布日期:  2020-12-07

目录

    /

    返回文章
    返回