留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋中90Sr:日本周边海域与南海的对比

林武辉 何建华 余克服 杜金秋 邓芳芳 梁林 李俊怡 何贤文 陈宝才 冯亮亮

林武辉,何建华,余克服,等. 海洋中90Sr:日本周边海域与南海的对比[J]. 海洋学报,2020,42(10):47–58 doi: 10.3969/j.issn.0253-4193.2020.10.005
引用本文: 林武辉,何建华,余克服,等. 海洋中90Sr:日本周边海域与南海的对比[J]. 海洋学报,2020,42(10):47–58 doi: 10.3969/j.issn.0253-4193.2020.10.005
Lin Wuhui,He Jianhua,Yu Kefu, et al. 90Sr in marine environment: Comparison of seas surrounding Japan and the South China Sea[J]. Haiyang Xuebao,2020, 42(10):47–58 doi: 10.3969/j.issn.0253-4193.2020.10.005
Citation: Lin Wuhui,He Jianhua,Yu Kefu, et al. 90Sr in marine environment: Comparison of seas surrounding Japan and the South China Sea[J]. Haiyang Xuebao,2020, 42(10):47–58 doi: 10.3969/j.issn.0253-4193.2020.10.005

海洋中90Sr:日本周边海域与南海的对比

doi: 10.3969/j.issn.0253-4193.2020.10.005
详细信息
    作者简介:

    林武辉(1987-),男,福建省泉州市人,博士,主要从事海洋过程的同位素示踪、海洋放射性监测与评价研究。E-mail:linwuhui8@163.com

    通讯作者:

    余克服(1969-),男,湖北省公安县人,教授,主要从事珊瑚礁地质与生态环境研究。E-mail: kefuyu@scsio.ac.cn

  • 中图分类号: P714+.4;P734.2+4

90Sr in marine environment: Comparison of seas surrounding Japan and the South China Sea

  • 摘要: 90Sr长期被视为最重要的人工放射性核素之一,日本福岛核事故导致包括90Sr在内的大量放射性物质泄漏进入海洋,厂区储水罐中冷却废水至今仍然存在大量90Sr。海洋中90Sr分析方法却繁琐耗时,导致核事故后的90Sr研究较为匮乏,且缺乏系统的认识。本研究在2015−2018年期间测量南海海水和多种海洋生物(马尾藻、海虾、牡蛎、红树林植物、造礁珊瑚)中90Sr的基础上,深入分析核事故后日本周边海域和南海90Sr的比活度水平与环境半衰期。结合文献资料,本研究发现1975−2010年期间日本近岸海水90Sr的环境半衰期为15.4 a,2011年的核事故后日本周边海洋中90Sr比活度显著升高,基于ERICA软件定量计算核事故后90Sr对海洋鱼类的剂量率比核事故前的结果高5个数量级。南海作为福岛核事故后北太平洋环流的下游海域,本文进一步构建1984−2018年期间南海90Sr比活度的历史曲线,发现核事故前后南海90Sr比活度水平没有可识别的变化,进一步定量计算南海90Sr的环境半衰期为26.7 a,发现边缘海和大洋中90Sr和137Cs环境半衰期格局差异与核素(90Sr和137Cs)的源汇过程(河流输入和海洋生物泵)密切相关。鉴于海洋中90Sr分析方法的挑战性,本文发现在10多种海洋生物中造礁珊瑚骨骼几乎拥有最高的90Sr浓集因子(约1 000 L/kg),同时具有较易大量获取、固定附着生长、连续高分辨率记录、前处理简单快速等优点,很可能是海洋中90Sr可靠的指示生物。造礁珊瑚中90Sr研究将有利于揭示人工放射性核素的源汇过程,同时为我国海洋放射性监测方案和相关标准导则的优化和完善提供有益的参考。

     

  • 图  南海90Sr站位(蓝点)空间分布

    Figure  1.  Stations (blue dots) of 90Sr in the South China Sea

    图  1965−2018年日本周边海域的海水90Sr比活度的历史曲线

    Figure  2.  Historical 90Sr activity in seawater from the sea surrounding Japan during 1965−2018

    图  1984−2018年期间南海海水90Sr的历史变化曲线

    Figure  3.  Historical 90Sr activity in seawater from the South China Sea during 1984−2018

    图  90Sr和137Cs在边缘海(南海[24]、日本海[67]、波罗的海[48])和大洋[25]的EHL格局

    Figure  4.  Distinct EHL patterns of 90Sr and 137Cs in the marginal seas (South China Sea[24], Japan Sea[67], and Baltic Sea[48]) and open oceans[25]

    表  1  福岛核事故后日本周边海域的海水中90Sr的比活度

    Table  1.   90Sr activity in seawater from the sea surrounding Japan after the Fukushima Nuclear Accident

    样品来源 年份 位置 比活度范围/Bq·m−3 平均值/Bq·m−3 参考文献
    福岛核电站附近海水 2011 37.40°N, 141.20°E 200.00~4.00×105 [5]
    福岛外海海水(15 km外) 2011 37.50°N, 141.20°E 10.00~9.00×103 [5]
    日本近海海水样品 2011 34.00~38.00°N,141.00~148.00°E 0.80~85.00 [10]
    福岛核电站附近海水 2011 36.25~41.10°N,141.00~141.20°E 6.00~104.00 [42]
    2012 36.25~41.10°N,141.00~141.20°E 2.00~53.00 [42]
    2013 36.25~41.10°N,141.00~141.20°E 3.00~42.00 [42]
    福岛核电站附近海水 2013 36.60~37.60°N,141.00~141.50°E 0.66~29.13 6.66 [43]
    福岛核电站附近海水 2013 37.40°N,141.10°E 154.20~172.30 160.20 [44]
    福岛核电站附近海水 2013 37.00~38.37°N,141.02~141.50°E 0.60~8.90 [12]
    福岛核电站附近海水 2014 37.43°N,141.04°E 26.00 [45]
    福岛核电站附近海水 2015 37.43°N,141.04°E 1.53 [45]
    福岛核电站附近海水 2016 37.43°N,141.04°E 1.03 [45]
      注:−表示参考文献并未给出具体数据。
    下载: 导出CSV

    表  2  福岛核事故后日本周边海域的海洋沉积物中90Sr比活度

    Table  2.   90Sr activity in marine sediment from the sea surrounding Japan after the Fukushima Nuclear Accident

    样品来源 年份 经纬度 比活度范围/Bq·kg−1 平均值/Bq·kg−1 参考文献
    日本太平洋沿岸海洋沉积物 2011 37.13°N, 141.00°E 3.20~5.60 4.16 [14]
    日本茨城县近岸沉积物 2012 36.37°N, 140.84° E 0.13~0.26 [13]
      注:−表示参考文献并未给出具体数据。
    下载: 导出CSV

    表  3  福岛核事故后日本周边海域的海洋生物中90Sr的比活度

    Table  3.   90Sr activity in marine biotas from the sea surrounding Japan after the Fukushima Nuclear Accident

    样品来源 年份 经纬度 比活度范围/Bq·kg−1 平均值/Bq·kg−1 参考文献
    福岛核电站港湾内海洋鱼类 2013 37.40°N, 141.00°E <170.00 [57]
    福岛外海海洋鱼类 2011−2014 37.20~37.50°N,140.90~141.20°E <1.20 [15]
    海洋贝类 2011 36.25~41.10°N,141.00~141.20°E 0.13×10−1~1.91×10−1 [42]
    2012 36.25~41.10°N,141.00~141.20°E 0.29×10−1 ~0.85×10−1 [42]
    2013 37.40°N,141.00°E 0.57×10−1 0.57×10−1 [42]
    西北太平洋海洋生物 2012 0.01~0.19 [17]
      注:−表示参考文献并未给出具体数据。
    下载: 导出CSV

    表  4  基于ERICA软件的核事故前后90Sr对海洋鱼类的电离辐射评价

    Table  4.   ERICA tool-derived radiation dose rate of 90Sr on marine fish in pre-Fukushima and post-Fukushima eras

    时间 海水中比活度/Bq·L−1 海鱼中比活度/Bq·kg−1 海洋沉积物中比活度/Bq·kg−1 剂量率/μGy·h−1
    底栖鱼类 游泳鱼类
    福岛核事故后 400.00[5] 170.00[57] 5.60[14] 1.12×10−1 1.16×10−1
    福岛核事故前 1.00×10−3[5] 7.10×10−3[16] 0.13[13] 7.54×10−6 4.43×10−6
    下载: 导出CSV

    表  5  海洋生物中90Sr比活度与浓集因子

    Table  5.   90Sr activity and its concentration factor in marine biotas

    海洋生物种类 90Sr比活度/Bq·kg−1 浓集因子/L·kg−1 参考文献
    南海造礁珊瑚骨骼 1.21 ~1.00×103 [79]
    福岛核事故后的海洋双壳类软组织 0.01~0.17 ~1.40 [42]
    福岛核事故后的西北太平洋鱿鱼 0.02~0.05 4.00~19.00 [17]
    福岛核事故后的西北太平洋海洋鱼类 0.01~0.06 3.00~49.00 [17]
    波罗的海海洋鱼类(比目鱼) 鱼骨 0.77 81.80 [59]
    波罗的海海洋鱼类(比目鱼) 肌肉 0.06 8.40 [59]
    波罗的海海洋鱼类(比目鱼) 全鱼 0.16 25.40 [59]
    波罗的海海洋双壳类 0.57~1.19 61.00~129.00 [56]
    广西防城港核电站周边海虾 0.06~0.07 28.00~40.00 本研究
    广西防城港核电站周边牡蛎 0.18 75.00 本研究
    广西防城港核电站周边马尾藻 0.10 45.00 本研究
    广西防城港核电站周边红树林 0.20~0.50 106.00~217.00 本研究
    有孔虫 150.00 [80]
    颗石藻 320.00 [81]
    双壳类外壳 250.00 [82]
    鱼类耳石 500.00 [83]
    仙掌藻 1.10×103 [84]
      注:−表示参考文献中没有90Sr的数据,浓集因子基于元素Sr浓度计算获得。
    下载: 导出CSV
  • [1] 林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展[J]. 中国环境科学, 2015, 35(1): 269−276.

    Lin Wuhui, Chen Liqi, He Jianhua, et al. Review on monitoring marine radioactivity since the Fukushima Nuclear Accident[J]. China Environmental Science, 2015, 35(1): 269−276.
    [2] Lin Wuhui, Chen Liqi, Yu Wen, et al. Radioactive source terms for the Fukushima Nuclear Accident[J]. Science China: Earth Sciences, 2016, 59(1): 214−222. doi: 10.1007/s11430-015-5112-8
    [3] Lin Wuhui, Chen Liqi, Yu Wen, et al. Radioactivity impacts of the Fukushima Nuclear Accident on the atmosphere[J]. Atmospheric Environment, 2015, 102: 311−322. doi: 10.1016/j.atmosenv.2014.11.047
    [4] Buesseler K, Dai Minhan, Aoyama M, et al. Fukushima daiichi-derived radionuclides in the ocean: transport, fate, and impacts[J]. Annual Review of Marine Science, 2017, 9: 173−203. doi: 10.1146/annurev-marine-010816-060733
    [5] Povinec P P, Hirose K, Aoyama M. Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact[J]. Environmental Science & Technology, 2012, 46(18): 10356−10363.
    [6] 邓芳芳, 林武辉, 林静, 等. 海水中90Sr测量的国际比对研究[J]. 海洋环境科学, 2018, 37(3): 448−451, 463. doi: 10.12111/j.cnki.mes20180321

    Deng Fangfang, Lin Wuhui, Lin Jing, et al. International comparison of 90Sr analysis in seawater[J]. Marine Environmental Science, 2018, 37(3): 448−451, 463. doi: 10.12111/j.cnki.mes20180321
    [7] 邓芳芳, 林武辉, 于涛, 等. 海洋沉积物中90Sr的分析方法[J]. 核化学与放射化学, 2015, 37(4): 231−237. doi: 10.7538/hhx.2015.37.04.0231

    Deng Fangfang, Lin Wuhui, Yu Tao, et al. 90Sr analysis method in the marine sediments[J]. Journal of Nuclear and Radiochemistry, 2015, 37(4): 231−237. doi: 10.7538/hhx.2015.37.04.0231
    [8] Vajda N, Kim C K. Determination of radiostrontium isotopes: A review of analytical methodology[J]. Applied Radiation and Isotopes, 2010, 68(12): 2306−2326. doi: 10.1016/j.apradiso.2010.05.013
    [9] Shao Yang, Yang Guosheng, Tazoe H, et al. A review of measurement methodologies and their applications to environmental 90Sr[J]. Journal of Environmental Radioactivity, 2018, 192: 321−333. doi: 10.1016/j.jenvrad.2018.07.013
    [10] Casacuberta N, Masqué P, Garcia-Orellana J, et al. 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident[J]. Biogeosciences, 2013, 10(6): 3649−3659. doi: 10.5194/bg-10-3649-2013
    [11] Yu Wen, He Jianhua, Lin Wuhui, et al. Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the Northwest Pacific[J]. Journal of Environmental Radioactivity, 2015, 142: 54−61. doi: 10.1016/j.jenvrad.2015.01.005
    [12] Castrillejo M, Casacuberta N, Breier C F, et al. Reassessment of 90Sr, 137Cs, and 134Cs in the coast off Japan derived from the Fukushima Dai-ichi nuclear accident[J]. Environmental Science & Technology, 2016, 50(1): 173−180.
    [13] Nagaoka M, Yokoyama H, Fujita H, et al. Spatial distribution of radionuclides in seabed sediments off Ibaraki coast after the Fukushima Daiichi Nuclear Power Plant accident[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(2): 1305−1308. doi: 10.1007/s10967-014-3633-9
    [14] Shozugawa K, Riebe B, Walther C, et al. Fukushima-derived radionuclides in sediments of the Japanese Pacific Ocean coast and various Japanese water samples (seawater, tap water, and coolant water of Fukushima Daiichi reactor unit 5)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 307: 1787−1793.
    [15] Miki S, Fujimoto K, Shigenobu Y, et al. Concentrations of 90Sr and 137Cs/90Sr activity ratios in marine fishes after the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Fisheries Oceanography, 2017, 26(2): 221−233. doi: 10.1111/fog.12182
    [16] Johansen M P, Ruedig E, Tagami K, et al. Radiological dose rates to marine fish from the Fukushima Daiichi accident: the first three years across the North Pacific[J]. Environmental Science & Technology, 2015, 49(3): 1277−1285.
    [17] Men Wu, Deng Fangfang, He Jianhua, et al. Radioactive impacts on nekton species in the Northwest Pacific and humans more than one year after the Fukushima nuclear accident[J]. Ecotoxicology and Environmental Safety, 2017, 144: 601−610. doi: 10.1016/j.ecoenv.2017.06.042
    [18] 陈锦芳, 刘广山. 环境样品中90Sr的分析方法及其在海洋学研究中的应用[J]. 台湾海峡, 2003, 22(3): 395−406.

    Chen Jinfang, Liu Guangshan. Reviews on 90Sr measurement methods and applications in oceanographical research in environment[J]. Journal of Oceanography in Taiwan Strait, 2003, 22(3): 395−406.
    [19] Steinhauser G. Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions[J]. Environmental Science & Technology, 2014, 48(9): 4649−4663.
    [20] Cai Zhongya, Gan Jianping, Liu Zhiqiang, et al. Progress on the formation dynamics of the layered circulation in the South China Sea[J]. Progress in Oceanography, 2020, 181: 102246. doi: 10.1016/j.pocean.2019.102246
    [21] Yamada M, Zheng Jian, Wang Zhongliang. 137Cs, 239+240Pu and 240Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas[J]. Science of the Total Environment, 2006, 366(1): 242−252. doi: 10.1016/j.scitotenv.2005.08.014
    [22] Yamada M, Wang Zhongliang, Zheng Jian. The extremely high 137Cs inventory in the Sulu Sea: a possible mechanism[J]. Journal of Environmental Radioactivity, 2006, 90(2): 163−171. doi: 10.1016/j.jenvrad.2006.06.013
    [23] Wu Junwen, Sun Jiang, Xiao Xiyu. An overview of current knowledge concerning the inventory and sources of plutonium in the China Seas[J]. Marine Pollution Bulletin, 2020, 150: 110599. doi: 10.1016/j.marpolbul.2019.110599
    [24] Wu Junwen. Impacts of Fukushima Daiichi Nuclear Power Plant accident on the Western North Pacific and the China seas: evaluation based on field observation of 137Cs[J]. Marine Pollution Bulletin, 2018, 127: 45−53. doi: 10.1016/j.marpolbul.2017.11.056
    [25] Povinec P P, Aarkrog A, Buesseler K O, et al. 90Sr, 137Cs and 239, 240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results[J]. Journal of Environmental Radioactivity, 2005, 81(1): 63−87. doi: 10.1016/j.jenvrad.2004.12.003
    [26] Brown J E, Alfonso B, Avila R, et al. The ERICA tool[J]. Journal of Environmental Radioactivity, 2008, 99(9): 1371−1383. doi: 10.1016/j.jenvrad.2008.01.008
    [27] 刘伟容, 齐宇虹, 林峰, 等. 海南昌江核电厂两次海域放射性调查结果分析[J]. 应用海洋学学报, 2020, 39(1): 63−70.

    Liu Weirong, Qi Yuhong, Lin Feng, et al. Result analysis of two marine radioactivity surveys in the adjacent waters of Hainan Changjiang NPP[J]. Journal of Applied Oceanography, 2020, 39(1): 63−70.
    [28] 陈宝才, 彭崇, 周花珑, 等. 防城港核电厂运行初期周围环境中90Sr放射性水平调查[J]. 中国辐射卫生, 2019, 28(5): 575−578.

    Chen Baocai, Peng Chong, Zhou Hualong, et al. Investigation of 90Sr radioactivity level in the environment of Fangchenggang Nuclear Power Plant during initial operation period[J]. Chinese Journal of Radiological Health, 2019, 28(5): 575−578.
    [29] 朱深河, 陈日荣, 张家俊. 阳江核电站外围环境海水中锶-90放射性水平调查[J]. 资源节约与环保, 2018(8): 84−85. doi: 10.3969/j.issn.1673-2251.2018.08.071

    Zhu Shenhe, Chen Rirong, Zhang Jiajun. Investigation on Sr-90 radioactivity level in seawater of external environment of Yangjiang Nuclear Power Plant[J]. Resources Economization & Environmental Protection, 2018(8): 84−85. doi: 10.3969/j.issn.1673-2251.2018.08.071
    [30] 姚海云, 朱玲, 周滟, 等. 1995-2009年我国近岸海域海水中放射性核素水平监测[J]. 辐射防护通讯, 2010, 30(5): 13−17. doi: 10.3969/j.issn.1004-6356.2010.05.003

    Yao Haiyun, Zhu Ling, Zhou Yan, et al. Monitoring of radioactivity levels of sea water in near coast marine environment in China during 1995−2009[J]. Radiation Protection Bulletin, 2010, 30(5): 13−17. doi: 10.3969/j.issn.1004-6356.2010.05.003
    [31] 刘广山, 周彩芸. 大亚湾不同介质中137Cs和90Sr的含量及行为特征[J]. 台湾海峡, 2000, 19(3): 261−268.

    Liu Guangshan, Zhou Caiyun. Contents and behavior characteristics of 137Cs and 90Sr in various mediums of Daya Bay[J]. Journal of Oceanography in Taiwan Strait, 2000, 19(3): 261−268.
    [32] 陈志东, 林清, 邓飞, 等. 大亚湾核电站周围海洋介质中核素90Sr、137Cs的放射性水平[C]//全国放射性流出物和环境监测与评价研讨会论文集. 北京: 中国核学会, 中国环境学会, 2003: 110−115.

    Chen Zhidong, Lin Qing, Deng Fei, et al. Radioactivity levels of nuclides 90Sr and 137Cs in marine media around Daya Bay Nuclear Power Plant[C]//Compilation of Papers from National Symposium on Radioactive Effluent and Environmental Monitoring and Evaluation. Beijing: China Nuclear Society, China Environmental Society, 2003: 110−115.
    [33] 林炳兴, 周治发. 广东大亚湾沿海地区生态环境中90Sr含量水平调查[J]. 辐射防护, 1995, 15(2): 129−137.

    Lin Bingxing, Zhou Zhifa. Investigation of 90Sr activity level of Daya Bay coastal areas in Guangdong[J]. Radiation Protection, 1995, 15(2): 129−137.
    [34] 陈进兴. 南海近海水中U, 90Sr, 137Cs, 3H和总β放射性分布[J]. 海洋科学, 1993, 17(1): 69−70.

    Chen Jinxing. Distribution of U, 90Sr, 137Cs, 3H and gross Beta radioactivity in offshore water of South China Sea[J]. Marine Sciences, 1993, 17(1): 69−70.
    [35] 吴世炎, 施纯坦, 陈进兴. 广东近岸海域表层水中90Sr和137Cs的分布[J]. 台湾海峡, 1992, 11(4): 363−367.

    Wu Shiyan, Shi Chuntan, Chen Jinxing. Distribution of 90Sr and 137Cs in coastal surface waters of Guangdong[J]. Journal of Oceanography in Taiwan Strait, 1992, 11(4): 363−367.
    [36] 刘怀, 陈炽, 梁谦林. 南海珠江口海区人工放射性核素90Sr, 137Cs分布特征的研究[J]. 海洋科学, 1989(1): 62−64.

    Liu Huai, Chen Zhi, Liang Qianlin. Study of distribution character of artificial radioactives 90Sr, 137Cs in the Zhujiang Estuary area in South China Sea[J]. Marine Sciences, 1989(1): 62−64.
    [37] 刘怀. 南海近海海水中人工放射性核素90Sr的含量及分布[J]. 海洋科学, 1987, 11(5): 36−37.

    Liu Huai. The content and distribution of artificical radionuclide 90Sr in the offshore water in South China Sea[J]. Marine Sciences, 1987, 11(5): 36−37.
    [38] 吉长余, 张东果. 大亚湾核电站1994~2003年环境辐射监测结果与分析[J]. 辐射防护, 2004, 24(3/4): 173−190.

    Ji Changyu, Zhang Dongguo. Results and analysis of environmental radiation monitoring at GNPS (1994~2003)[J]. Radiation Protection, 2004, 24(3/4): 173−190.
    [39] Zhou Peng, Li Dongmei, Zhao Li, et al. Radioactive status of seawater and its assessment in the northeast South China Sea and the Luzon Strait and its adjacent areas from 2011 to 2014[J]. Marine Pollution Bulletin, 2018, 131: 163−173. doi: 10.1016/j.marpolbul.2018.04.009
    [40] 陈进兴, 吴世炎, 施纯坦, 等. 南海近海放射性背景值的综合研究[J]. 同位素, 1993, 6(1): 41−46.

    Chen Jinxing, Wu Shiyan, Shi Chuntan, et al. Comprehensive study of radioactive background in the coastal waters of South China Sea area[J]. Journal of Isotopes, 1993, 6(1): 41−46.
    [41] Bourlat Y, Millies-Lacroix J, Le Petit G, et al. 90Sr, 137Cs and 239, 240Pu in world ocean water samples collected from 1992 to 1994[M]//Guegueniat P, Germain P, Metivier H. Radionuclides in the Oceans. Input and Inventories. Les Ulis: Les editions de Physique, 1996: 75−93.
    [42] Karube Z I, Inuzuka Y, Tanaka A, et al. Radiostrontium monitoring of bivalves from the Pacific coast of eastern Japan[J]. Environmental Science and Pollution Research, 2016, 23(17): 17095−17104. doi: 10.1007/s11356-016-6878-8
    [43] Tazoe H, Yamagata T, Tsujita K, et al. Observation of dispersion in the Japanese coastal area of released 90Sr, 134Cs, and 137Cs from the Fukushima Daiichi Nuclear Power Plant to the Sea in 2013[J]. International Journal of Environmental Research and Public Health, 2019, 16(21): 4094. doi: 10.3390/ijerph16214094
    [44] Tazoe H, Obata H, Yamagata T, et al. Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA resin for seawater monitoring[J]. Talanta, 2016, 152: 219−227. doi: 10.1016/j.talanta.2016.01.065
    [45] IAEA. Interlaboratory Comparisons 2014−2016: Determination of Radionuclides in Sea Water, Sediment and Fish[M]. Vienna: IAEA, 2019.
    [46] Cigna A A. Forty years of anthropogenic radionuclides in surface seawater. Italian and Japanese data[J]. Ocean Science Journal, 2006, 41(4): 261−290. doi: 10.1007/BF03020630
    [47] de Villiers S. Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans[J]. Earth and Planetary Science Letters, 1999, 171(4): 623−634. doi: 10.1016/S0012-821X(99)00174-0
    [48] Saniewski M, Zalewska T. Budget of 90Sr in the Gulf of Gdańsk (southern Baltic Sea)[J]. Oceanologia, 2018, 60(3): 256−263. doi: 10.1016/j.oceano.2017.11.002
    [49] Japan Coast Guard. Annual Reports of Radioactivity Survey for 1999−2018[EB/OL]. [2019-10-28]. https://www1.kaiho.mlit.go.jp/KANKYO/OSEN/housha.html.
    [50] 林武辉, 余克服, 王英辉, 等. 海洋沉积过程的铀系放射性核素示踪技术: 物源识别、沉积、再悬浮[J]. 海洋地质与第四纪地质, 2020, 40(1): 60−70.

    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Using uranium-series radionuclides as tools for tracing marine sedimentary processes: Source identification, sedimentation rate, and sediment resuspension[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 60−70.
    [51] Lin Wuhui, Feng Yu, Yu Kefu, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway[J]. Marine Geology, 2020, 424: 106157. doi: 10.1016/j.margeo.2020.106157
    [52] Lin Wuhui, Chen Liqi, Zeng Shi, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean[J]. Scientific Reports, 2016, 6: 27069. doi: 10.1038/srep27069
    [53] Wang Cuiyu, Baumann Z, Madigan D J, et al. Contaminated marine sediments as a source of cesium radioisotopes for benthic fauna near fukushima[J]. Environmental Science & Technology, 2016, 50(19): 10448−10455.
    [54] Maderich V, Jung K T, Bezhenar R, et al. Dispersion and fate of 90Sr in the northwestern Pacific and adjacent seas: Global fallout and the Fukushima Dai-ichi accident[J]. Science of the Total Environment, 2014, 494−495: 261−271. doi: 10.1016/j.scitotenv.2014.06.136
    [55] Takata H, Kusakabe M, Inatomi N, et al. The contribution of sources to the sustained elevated inventory of 137Cs in offshore waters east of Japan after the Fukushima Dai-ichi Nuclear Power Station accident[J]. Environmental Science & Technology, 2016, 50(13): 6957−6963.
    [56] Zalewska T, Suplińska M. Anthropogenic radionuclides 137Cs and 90Sr in the southern Baltic Sea ecosystem[J]. Oceanologia, 2013, 55(3): 485−517. doi: 10.5697/oc.55-3.485
    [57] Fujimoto K, Miki S, Kaeriyama H, et al. Use of otolith for detecting strontium-90 in fish from the harbor of Fukushima Dai-ichi Nuclear Power Plant[J]. Environmental Science & Technology, 2015, 49(12): 7294−7301.
    [58] Miura T, Minai Y, Yonezawa C, et al. Preparation and certification of certified reference materials of fish meat and ashed bone for determination of 90Sr and radiocesium after Fukushima Daiichi Nuclear Power Plant[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(1): 347−352. doi: 10.1007/s10967-018-6028-5
    [59] Zalewska T, Saniewski M, Suplińska M, et al. 90Sr in fish from the southern Baltic Sea, coastal lagoons and freshwater lake[J]. Journal of Environmental Radioactivity, 2016, 158−159: 38−46. doi: 10.1016/j.jenvrad.2016.03.024
    [60] Brown J E, Alfonso B, Avila R, et al. A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals[J]. Journal of Environmental Radioactivity, 2016, 153: 141−148. doi: 10.1016/j.jenvrad.2015.12.011
    [61] Garnier-Laplace J, Copplestone D, Gilbin R, et al. Issues and practices in the use of effects data from FREDERICA in the ERICA Integrated Approach[J]. Journal of Environmental Radioactivity, 2008, 99(9): 1474−1483. doi: 10.1016/j.jenvrad.2008.04.012
    [62] Lin Wuhui, Feng Yu, Yu Kefu, et al. Comparative study of radioactivity levels and radionuclide fingerprints in typical marine ecosystems of coral reefs, mangroves, and hydrothermal vents[J]. Marine Pollution Bulletin, 2020, 152: 110913. doi: 10.1016/j.marpolbul.2020.110913
    [63] Deng Fangfang, Lin Feng, Yu Wen, et al. The distributions of 134Cs, 137Cs and 90Sr in the northwest Pacific seawater in the winter of 2012[J]. Marine Pollution Bulletin, 2020, 152: 110900. doi: 10.1016/j.marpolbul.2020.110900
    [64] Inoue M, Shirotani Y, Nagao S, et al. Spatial variations of 226Ra, 228Ra, 134Cs, and 137Cs concentrations in western and southern waters off the Korean Peninsula in July 2014[J]. Journal of Environmental Radioactivity, 2018, 182: 151−156. doi: 10.1016/j.jenvrad.2017.11.020
    [65] Inoue M, Shirotani Y, Yamashita S, et al. Temporal and spatial variations of 134Cs and 137Cs levels in the Sea of Japan and Pacific coastal region: Implications for dispersion of FDNPP-derived radiocesium[J]. Journal of Environmental Radioactivity, 2018, 182: 142−150. doi: 10.1016/j.jenvrad.2017.11.032
    [66] Men Wu, He Jianhua, Wang Fenfen, et al. Radioactive status of seawater in the Northwest Pacific more than one year after the Fukushima nuclear accident[J]. Scientific Reports, 2015, 5: 7757. doi: 10.1038/srep07757
    [67] Hirose K, Povinec P P. 137Cs and 90Sr in surface waters of the Sea of Japan: Variations and the Fukushima Dai-ichi Nuclear Power Plant accident impact[J]. Marine Pollution Bulletin, 2019, 146: 645−652. doi: 10.1016/j.marpolbul.2019.07.024
    [68] Ikeuchi Y. Temporal variations and behaviour of 90Sr and 137Cs in precipitation, river water and seawater in Japan[J]. Radioactivity in the Environment, 2006, 8: 397−405. doi: 10.1016/S1569-4860(05)08032-0
    [69] 中华人民共和国生态环境部. 全国辐射环境质量报告[R]. 北京: 生态环境部, 2014−2018.

    Ministry of Ecology and Environment of the People’s Republic of China. Annual Report of the National Radiation Environment[R]. Beijing: Ministry of Ecology and Environment, 2014−2018.
    [70] Zhang Zijian, Ninomiya K, Yamaguchi Y, et al. Atmospheric activity concentration of 90Sr and 137Cs after the Fukushima Daiichi nuclear accident[J]. Environmental Science & Technology, 2018, 52(17): 9917−9925.
    [71] Rosenberg B L, Ball J E, Shozugawa K, et al. Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 1: Depth profiles of radiocesium and strontium-90 in soil[J]. Applied Geochemistry, 2017, 85: 201−208. doi: 10.1016/j.apgeochem.2017.06.003
    [72] Sahoo S K, Kavasi N, Sorimachi A, et al. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima Daiichi Nuclear Power Plant[J]. Scientific Reports, 2016, 6: 23925. doi: 10.1038/srep23925
    [73] Konno M, Takagai Y. Determination and comparison of the strontium-90 concentrations in topsoil of Fukushima prefecture before and after the Fukushima Daiichi nuclear accident[J]. ACS Omega, 2018, 3(12): 18028−18038. doi: 10.1021/acsomega.8b02640
    [74] Amano H, Sakamoto H, Shiga N, et al. Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan[J]. Applied Radiation and Isotopes, 2016, 112: 131−135. doi: 10.1016/j.apradiso.2016.03.026
    [75] Koarai K, Kino Y, Takahashi A, et al. 90Sr in teeth of cattle abandoned in evacuation zone: Record of pollution from the Fukushima-Daiichi Nuclear Power Plant accident[J]. Scientific Reports, 2016, 6: 24077. doi: 10.1038/srep24077
    [76] Merz S, Shozugawa K, Steinhauser G. Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident[J]. Environmental Science & Technology, 2015, 49(5): 2875−2885.
    [77] Nabeshi H, Tsutsumi T, Uekusa Y, et al. Surveillance of strontium-90 in foods after the fukushima daiichi nuclear power plant accident[J]. Shokuhin Eiseigaku Zasshi, 2015, 56(4): 133−143. doi: 10.3358/shokueishi.56.133
    [78] Koarai K, Kino Y, Takahashi A, et al. 90Sr specific activity of teeth of abandoned cattle after the Fukushima accident—teeth as an indicator of environmental pollution[J]. Journal of Environmental Radioactivity, 2018, 183: 1−6. doi: 10.1016/j.jenvrad.2017.12.005
    [79] 林武辉, 余克服, 邓芳芳, 等. 南海现代珊瑚骨骼中放射性核素特征指纹[J]. 中国环境科学, 2019, 39(10): 4279−4289. doi: 10.3969/j.issn.1000-6923.2019.10.030

    Lin Wuhui, Yu Kefu, Deng Fangfang, et al. Fingerprints of radionuclides in modern coral skeletons in the South China Sea[J]. China Environmental Science, 2019, 39(10): 4279−4289. doi: 10.3969/j.issn.1000-6923.2019.10.030
    [80] Dissard D, Nehrke G, Jan Reichart G, et al. The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: Results from culture experiments[J]. Geochimica et Cosmochimica Acta, 2010, 74(3): 928−940. doi: 10.1016/j.gca.2009.10.040
    [81] Stoll H M, Rosenthal Y, Falkowski P. Climate proxies from Sr/Ca of coccolith calcite: Calibrations from continuous culture of Emiliania huxleyi[J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 927−936. doi: 10.1016/S0016-7037(01)00836-5
    [82] Gillikin D P, Lorrain A, Navez J, et al. Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(5): Q05009.
    [83] DiMaria R A, Miller J A, Hurst T P. Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus macrocephalus[J]. Environmental Biology of Fishes, 2010, 89(3/4): 453−462.
    [84] Delaney M L, Linn L J, Davies P J. Trace and minor element ratios in Halimeda aragonite from the Great Barrier Reef[J]. Coral Reefs, 1996, 15(3): 181−189.
    [85] Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Radioactive level of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 2019, 142: 43−53. doi: 10.1016/j.marpolbul.2019.03.030
    [86] 林武辉, 余克服, 王英辉, 等. 珊瑚礁区沉积物的极低放射性水平特征与成因[J]. 科学通报, 2018, 63(21): 2173−2183. doi: 10.1360/N972017-01101

    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Extremely low radioactivity in marine sediment of coral reefs and its mechanism[J]. Chinese Science Bulletin, 2018, 63(21): 2173−2183. doi: 10.1360/N972017-01101
    [87] Sun Y, Sun M, Lee T, et al. Influence of seawater Sr content on coral Sr/Ca and Sr thermometry[J]. Coral Reefs, 2005, 24(1): 23−29. doi: 10.1007/s00338-004-0467-x
    [88] Yu Kefu. Coral reefs in the South China Sea: Their response to and records on past environmental changes[J]. Science China: Earth Sciences, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  188
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-02
  • 修回日期:  2020-07-19
  • 发布日期:  2020-12-07

目录

    /

    返回文章
    返回