留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义回归神经网络的全球表层海水1°×1°二氧化碳分压数据推演

钟国荣 李学刚 曲宝晓 王彦俊 袁华茂 宋金明

钟国荣,李学刚,曲宝晓,等. 基于广义回归神经网络的全球表层海水1°×1°二氧化碳分压数据推演[J]. 海洋学报,2020,42(10):70–79 doi: 10.3969/j.issn.0253-4193.2020.10.007
引用本文: 钟国荣,李学刚,曲宝晓,等. 基于广义回归神经网络的全球表层海水1°×1°二氧化碳分压数据推演[J]. 海洋学报,2020,42(10):70–79 doi: 10.3969/j.issn.0253-4193.2020.10.007
Zhong Guorong,Li Xuegang,Qu Baoxiao, et al. A general regression neural network approach to reconstruct global 1°×1° resolution sea surface pCO2[J]. Haiyang Xuebao,2020, 42(10):70–79 doi: 10.3969/j.issn.0253-4193.2020.10.007
Citation: Zhong Guorong,Li Xuegang,Qu Baoxiao, et al. A general regression neural network approach to reconstruct global 1°×1° resolution sea surface pCO2[J]. Haiyang Xuebao,2020, 42(10):70–79 doi: 10.3969/j.issn.0253-4193.2020.10.007

基于广义回归神经网络的全球表层海水1°×1°二氧化碳分压数据推演

doi: 10.3969/j.issn.0253-4193.2020.10.007
详细信息
    作者简介:

    钟国荣(1996-),男,江西省赣州市人,研究方向为大数据技术在海洋化学中的应用。E-mail:zhongguorong18@mails.ucas.ac.cn

    通讯作者:

    李学刚,男,研究员,主要从事海洋生物地球化学方面的研究。E-mail: lixuegang@qdio.ac.cn

  • 中图分类号: P714.2+2

A general regression neural network approach to reconstruct global 1°×1° resolution sea surface pCO2

  • 摘要: 表层海水二氧化碳分压是评估海洋碳源汇强度的关键参数,但其实测数据较少、时空分布极不均匀,导致二氧化碳交换通量的估算有很大的不确定性,海洋源汇特征就不能确切获取。为了解决这个难题,在收集的表层大洋二氧化碳地图(Surface Ocean CO2 Atlas,SOCAT)实测数据集基础上,运用广义回归神经网络建立二氧化碳分压与经纬度、时间、温度、盐度和叶绿素浓度间的非线性关系,构建了1998−2018年间全球1°×1°经纬度的表层海水二氧化碳分压格点数据,其标准误差为16.93 μatm,平均相对误差为2.97%,优于现有研究中的前反馈神经网络、自组织映射神经网络和机器学习算法等方法。根据构建的数据所绘制的全球表层海水二氧化碳分压的分布与现有研究有较好的一致性。

     

  • 图  1998–2018年间SOCAT二氧化碳分压数据分布情况

    Figure  1.  Spatial distribution of pCO2 observations in SOCAT dataset from 1998 to 2018

    图  SOCAT pCO2实测数据时间分布

    Figure  2.  Temporal distribution of pCO2 observations in SOCAT dataset

    图  广义回归神经网络结构

    Figure  3.  Structure of general regression neural network

    图  原始数据向量化过程

    Figure  4.  Vectorization of original data

    图  GRNN与实测值及其他神经网络方法同时间点pCO2数据结果对比

    Figure  6.  Comparation of pCO2 distribution between in situ measurements, GRNN and other approaches

    图  GRNN法与Takahashi等[24]气候态pCO2数据对比(2005年1月)

    Figure  7.  Comparation of pCO2 distributions between GRNN output and Takahashi[24] climatological mean (January, 2005)

    表  1  数据来源

    Table  1.   Data source

    参数 时间范围 分辨率 数据来源
    pCO2 1957−2018年 Surface Ocean CO2 Atlas (https://www.socat.info/)
    盐度 1940−2018年 1°×1° IAP, Global Ocean Heat Content Change (http://159.226.119.60/cheng/)
    叶绿素 1997−2019年 1°×1° European Service for Ocean Colour, Globcolour Project (http://www.globcolour.info/)
    温度 1981−2019年 0.25°×0.25° NOAA OI SST V2 High Resolution Dataset (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html)
    下载: 导出CSV

    表  2  GRNN与其他方法误差对比

    Table  2.   Comparation of errors between GRNN and other approaches

    区域 标准误差/μatm
    FFNN[13] 机器学习算法[17] SOM[11, 12, 18-19] SOM-FFNN[20-21] GRNN
    全球大洋 17.97 9.10(墨西哥湾) 17.60~20.20 20.00~22.80 16.93(2.97%)b
    全球大洋及近岸a 21.60(3.52%)b
    北极 22.05 23.92(6.00%)b
    近极地大西洋 22.99 21.39(3.49%)b
    近极地太平洋 34.77 24.57(4.59%)b
    亚热带大西洋 17.28 13.87(2.66%)b
    亚热带太平洋 15.86 11.50(2.15%)b
    赤道大西洋 17.27 14.26(2.52%)b
    赤道太平洋 15.73 10.45(1.93%)b
    南大西洋 17.81 15.37(2.60%)b
    南太平洋 13.52 9.97(2.04%)b
    印度洋 17.25 11.64(2.25%)b
    南大洋 17.40 24.59(4.87%)b
    近岸区域a 42.40~48.00 46.87(8.83%)b
      注:a表示此处近岸区域指水深小于200 m的海域;b表示括号内为本文方法的平均相对误差;−表示无数据;FFNN:前反馈神经网络;SOM:自组织映射神经网络;SOM-FFNN:自组织映射神经网络与前反馈神经联用法;GRNN:本文所使用的广义回归神经网络。
    下载: 导出CSV
  • [1] 曲宝晓, 宋金明, 袁华茂, 等. 东海海−气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783−793. doi: 10.11867/j.issn.1001-8166.2013.07.0783

    Qu Baoxiao, Song Jinming, Yuan Huamao, et al. Advances of seasonal variations and controlling factors of the air-sea CO2 flux in the East China Sea[J]. Advances in Earth Science, 2013, 28(7): 783−793. doi: 10.11867/j.issn.1001-8166.2013.07.0783
    [2] Takahashi T, Sutherland S C, Feely R A, et al. Decadal change of the surface water pCO2 in the North Pacific: a synthesis of 35 years of observations[J]. Journal of Geophysical Research: Oceans, 2006, 111(C7): C07S05.
    [3] Song Jinming. Biogeochemical Processes of Biogenic Elements in China Marginal Seas[M]. Berlin, Heidelberg: Springer Science & Business Media, 2010: 140−144.
    [4] 宋金明, 李学刚, 袁华茂, 等. 渤黄东海生源要素的生物地球化学[M]. 北京: 科学出版社, 2019: 45-47.

    Song Jinming, Li Xuegang, Yuan Huamao, et al. Biogeochemistry of Biogenic Elements in the Bohai Sea, Yellow Sea and East China Sea[M]. Beijing: Science Press, 2019: 45−47.
    [5] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/10): 554−577.
    [6] Takamura T R, Inoue H Y, Midorikawa T, et al. Seasonal and inter-annual variations in $ {{p{\rm{CO}}}}_2^{{\rm{sea}}} $ and air-sea CO2 fluxes in mid-latitudes of the western and eastern North Pacific during 1999−2006: recent results utilizing voluntary observation ships[J]. Journal of the Meteorological Society of Japan, 2010, 88(6): 883−898. doi: 10.2151/jmsj.2010-602
    [7] Sarma V V S S, Saino T, Sasaoka K, et al. Basin-scale pCO2 distribution using satellite sea surface temperature, Chl a, and climatological salinity in the North Pacific in spring and summer[J]. Global Biogeochemical Cycles, 2006, 20(3): GB3005.
    [8] Lefévre N, Watson A J, Watson A R. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data[J]. Tellus B: Chemical and Physical Meteorology, 2005, 57(5): 375−384. doi: 10.1111/j.1600-0889.2005.00164.x
    [9] Zeng J Y, Nojiri Y, Nakaoka S I, et al. Surface ocean CO2 in 1990−2011 modelled using a feed-forward neural network[J]. Geoscience Data Journal, 2015, 2(1): 47−51. doi: 10.1002/gdj3.26
    [10] Zeng J, Nojiri Y, Landschützer P, et al. A global surface ocean fCO2 climatology based on a feed-forward neural network[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(8): 1838−1849. doi: 10.1175/JTECH-D-13-00137.1
    [11] Telszewski M, Chazottes A, Schuster U, et al. Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network[J]. Biogeosciences, 2009, 6(8): 1405−1421. doi: 10.5194/bg-6-1405-2009
    [12] Nakaoka S, Telszewski M, Nojiri Y, et al. Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique[J]. Biogeosciences, 2013, 10(9): 6093−6106. doi: 10.5194/bg-10-6093-2013
    [13] Denvil-Sommer A, Gehlen M, Vrac M, et al. LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean[J]. Geoscientific Model Development, 2019, 12(5): 2091−2105. doi: 10.5194/gmd-12-2091-2019
    [14] Körtzinger A. Determination of carbon dioxide partial pressure (p(CO2))[M]//Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis. 3rd ed. New York: Wiley, 1999: 149−158.
    [15] Specht D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568−576. doi: 10.1109/72.97934
    [16] 陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013: 208−237.

    Chen Ming. MATLAB Neural Network Principle and Example Fine Solution[M]. Beijing: Tsinghua University Press, 2013: 208−237.
    [17] Chen Shuangliang, Hu Chuanmin, Barnes B B, et al. A machine learning approach to estimate surface ocean pCO2 from satellite measurements[J]. Remote Sensing of Environment, 2019, 228: 203−226. doi: 10.1016/j.rse.2019.04.019
    [18] Friedrich T, Oschlies A. Neural network-based estimates of North Atlantic surface pCO2 from satellite data: a methodological study[J]. Journal of Geophysical Research: Oceans, 2009, 114(C3): C03020.
    [19] Hales B, Strutton P G, Saraceno M, et al. Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific[J]. Progress in Oceanography, 2012, 103: 1−15. doi: 10.1016/j.pocean.2012.03.001
    [20] Landschützer P, Gruber N, Bakker D C E, et al. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink[J]. Biogeosciences, 2013, 10(11): 7793−7815. doi: 10.5194/bg-10-7793-2013
    [21] Laruelle G G, Landschützer P, Gruber N, et al. Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation[J]. Biogeosciences, 2017, 14(19): 4545−4561. doi: 10.5194/bg-14-4545-2017
    [22] Zeng Jiye, Matsunaga T, Saigusa N, et al. Technical note: Evaluation of three machine learning models for surface ocean CO2 mapping[J]. Ocean Science, 2017, 13(2): 303−313. doi: 10.5194/os-13-303-2017
    [23] Landschützer P, Gruber N, Bakker D C E. Decadal variations and trends of the global ocean carbon sink[J]. Global Biogeochemical Cycles, 2016, 30(10): 1396−1417. doi: 10.1002/2015GB005359
    [24] Takahashi T, Sutherland S C, Chipman D W, et al. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations[J]. Marine Chemistry, 2014, 164: 95−125. doi: 10.1016/j.marchem.2014.06.004
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  139
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-29
  • 修回日期:  2020-03-23
  • 发布日期:  2020-12-07

目录

    /

    返回文章
    返回