留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳宇宙线地面增强事件(GLE72)峰值能谱研究

张云峰 贾焕玉 王辉

张云峰, 贾焕玉, 王辉. 太阳宇宙线地面增强事件(GLE72)峰值能谱研究[J]. 机械工程学报, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662
引用本文: 张云峰, 贾焕玉, 王辉. 太阳宇宙线地面增强事件(GLE72)峰值能谱研究[J]. 机械工程学报, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662
Zhang Yun-Feng, Jia Huan-Yu, Wang Hui. Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72)[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662
Citation: Zhang Yun-Feng, Jia Huan-Yu, Wang Hui. Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72)[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662

太阳宇宙线地面增强事件(GLE72)峰值能谱研究

doi: 10.7498/aps.70.20201662
详细信息
    通讯作者:

    E-mail: hyjia@swjtu.edu.cn

  • 中图分类号: 96.60.-j, 96.50.S-

Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72)

More Information
  • 摘要: 太阳宇宙线地面增强事件(GLE)能谱可以提供宇宙线加速和传播过程的重要信息. 利用GOES15卫星和地面中子堆实验数据分析了最近一次GLE事件(2017年9月GLE72)的质子峰值能谱, 得到卫星观测能段的质子峰值能谱的能谱指数为1.88, 中子堆观测能段的能谱指数为4.86. 利用高能太阳粒子的二重加速机制对能谱结果进行了定性的理论解释. GLE72质子峰值能谱结果对LHAASO等大型地面宇宙线观测阵列中更高能量粒子具有重要参考价值.

     

  • 图  地面中子堆DOMB站点在2017年9月5—18日的计数率(1小时平均)随时间的变化. X2.2级耀斑爆发于2017年9月6日08:57 UT (蓝色竖线), X9.3级耀斑爆发于2017年9月6日11:53 UT (粉色竖线), X1.3级耀斑爆发于2017年9月7日14:20 UT (绿色竖线), X8.2级耀斑爆发于2017年9月9日15:35 UT (红色竖线). GLE72事件的显著性为 $ 7.7\sigma $

    Figure  1.  Count-rate (hour averaged) variation of the DOMB on September 5–18, 2017. X2.2 flares erupt at 08:57 UT (blue) on September 6, 2017, X9.3 flares break out at 11:53 UT (pink) on September 6, 2017, X1.3 flares explode at 14:20 UT (green) on September 7, 2017, and X8.2 flare burst out at 15:35 UT (red) on September 9, 2017. The significance of GLE72 event is $ 7.7\sigma $ .

    图  GOES15卫星的EPEAD-A记录的能量为433 MeV的Proton (紫色)和Alpha (土红色)流强(5 min)随时间变化. 红色竖线表示2017年9月10日15:35 UT X8.2级耀斑爆发时刻

    Figure  2.  Profile of the time of Proton (purple) and Alpha (earth red) flux (433 MeV, 5 min) recorded by the EPEAD-A of GOES15 satellite. The red line indicates the X8.2 flare at 15:35 UT on September 10, 2017.

    图  GOES15卫星的EPEAD-A仪器测量的6个粒子能量通道(6.5, 11.6, 30.6, 63.1, 165, 433 MeV)的质子的流强随时间变化(黑色), 红色为平滑结果

    Figure  3.  Profile of the time of proton flux (black) in the six channels (6.5, 11.6, 30.6, 63.1 165, 433 MeV). The red line is the result obtained by Smoothing.

    图  各能量点峰值时间随能量的变化. 其中纵坐标1表示2017年9月10日15:35 UT耀斑爆发的时刻(黑色实线). 下三角为加权平均法得到的GOES15卫星各能量点流强到达峰值的时刻, 红色实线为下三角数据点拟合结果

    Figure  4.  Peak time as a function of the energy. The black solid line indicates the X8.2 flare at 15:35 UT on September 10, 2017. The lower triangle refers to the time of flux peak in different energies, which is obtained by the weighted average method. The red solid line is the fitting result.

    图  各能量点流强峰值随能量的变化. 黑正方形为平滑得到的GOES15卫星各能量点的流强峰值, 红色实线为黑正方形数据点(带有误差)拟合结果

    Figure  5.  Flux peak as a function of energy. The black square refers to flux peak in different energies obtained by Smoothing. The red solid line is the fitting result (with error).

    图  GLE72事件质子峰值能谱. GOES15卫星各能点(6.5, 11.6, 30.6, 63.1, 165, 433 MeV)的流强峰值(黑色方块), GOES15卫星各能量点流强峰值随能量变化的拟合结果(红色实线), GOES15卫星峰值能谱延长至100 GeV的流强随能量变化(红色实线段). GOES15卫星在各个能量点的各个时间17:00 UT(上三角)、17:30 UT(下三角)、18:00 UT(圆形)、18:30 UT(五角形)、19:00 UT(十字架)的流强. 中子堆实验数据计算得到的峰值能谱(粉色实线), 中子堆峰值能谱延长到100 GeV流强随能量的变化(粉色线段). Mashev等[12]给出的不同时间(17:00, 17:30, 18:00, 18:30, 19:00 UT) 的能谱(虚线). AMS02卫星测量银河宇宙线H[20]和He[21]的能谱(黑色实线)

    Figure  6.  Proton peak energy spectrum of GLE72 event. The flux peak (black block) of GOES15 satellite in different energies (6.5, 11.6, 30.6, 63.1, 165, 433 MeV). Fitting results of flux peak in different energies (red solid line). The flux of GOES15 satellite with the peak energy spectrum extending to 100 GeV as a function of energy (red line segment). The flux of GOES15 satellite in different energies and times [17:00 UT (upper triangle), 17:30 UT (lower triangle), 18:00 UT (circle), 18:30 UT (pentagonal), 19:00 UT (cross)]. The peak energy spectrum obtained from the experimental data of the neutron monitor (pink solid line). The flux of neutron monitor with the peak energy spectrum extending to 100 GeV as a function of energy (pink line segment). Energy spectra (dashed lines) at different times given by Mashev et al.[12]. The result of the energy spectrum of the galactic cosmic rays H[20] and He[21] measured by AMS02 satellite (black).

    图  太阳高能粒子加速示意图, 左边表示在低日冕层区加速的太阳高能粒子, 右边表示从低日冕区加速出来的一部分太阳高能粒子向上传播进入CME 进行重加速 [22,24,25]

    Figure  7.  A schematic representation of the acceleration of solar energetic particles. The acceleration in the low corona region (left). Part of the solar high-energy particles from the low corona enter into the CME, and be re-accelerated (right)[22,24,25].

  • [1] Hess V F 1912 Phys. Z. 13 1084
    [2] Simpson J A 1990 Proceedings of the 21th International Cosmic Ray Conference Adelaide, Australia, January 6–19, 1990 p187
    [3] Auger P, Ehrenfest P, Maze R 1939 Rev. Mod. Phys. 11 288 doi: 10.1103/RevModPhys.11.288
    [4] Karpov S N, Miroshnichenko L I, Vashenyuk E V 1998 Nuovo Cimento C 21 551 https://ui.adsabs.harvard.edu/abs/1998NCimC..21..551K
    [5] Shea M A, Smart D F 1990 Sol. Phys. 127 297 doi: 10.1007/BF00152170
    [6] Forbush S E 1946 Phys. Rev. 70 771 doi: 10.1103/PhysRev.70.771
    [7] Oh S Y, Yi Y, Bieber J W 2010 J. Geophys. Res. Space Phys. 115 A10107 doi: 10.1029/2009JA015171
    [8] Vashenyuk E V, Balabin Y V, Perez-Peraza J, Gallegos-Cruz A, Miroshnichenko L I 2006 Adv. Space Res. 38 411 doi: 10.1016/j.asr.2005.05.012
    [9] Mottl D, Nymmik R 2007 Adv. Space Res. 39 1355 doi: 10.1016/j.asr.2007.01.055
    [10] Bruno A, Christian E R, De Nolfo G A, Richardson I G, Ryan J M 2019 Space Weather 17 419 doi: 10.1029/2018SW002085
    [11] Gopalswamy N, Yashiro S, Mäkelä P, Xie H, Akiyama S, Monstein C 2018 Astrophys. J. Lett. 863 L39 doi: 10.3847/2041-8213/aad86c
    [12] Mishev A, Usoskin I, Raukunen O, Paassilta M, Valtonen E, Kocharov L, Vainio R 2018 Sol. Phys. 293 136 doi: 10.1007/s11207-018-1354-x
    [13] Mishev A L, Usoskin I G, Kovaltsov G A 2013 J. Geophys. Res. Space Phys. 118 2783 doi: 10.1002/jgra.50325
    [14] Dorman L, Tassev Y, Velinov P I Y, Mishev A, Tomova D, Mateev L 2019 J. Phys. Conf. Ser. 1181 012070 doi: 10.1088/1742-6596/1181/1/012070
    [15] Mavromichalaki H, Gerontidou M, Paschalis P 2018 Space Weather 16 1797 doi: 10.1029/2018SW001992
    [16] Shea M A, Smart D F 2012 Space Sci. Rev. 171 161 doi: 10.1007/s11214-012-9923-z
    [17] Abbasi R, Ackermann M, Adams J 2008 Astrophys. J. 689 L65 doi: 10.1086/595679
    [18] Mishev A L, Kocharov L G, Usoskin I G 2014 J. Geophys. Res. Space Phys. 119 670 doi: 10.1002/2013JA019253
    [19] Lockwood J A, Webber W R, Hsieh L 1974 J. Geophys. Res. 79 4149 doi: 10.1029/JA079i028p04149
    [20] Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 114 171103 doi: 10.1103/PhysRevLett.114.171103
    [21] Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 15 211101 doi: 10.1103/PhysRevLett.115.211101
    [22] Petrosian V 2016 Astrophys. J. 830 28 doi: 10.3847/0004-637X/830/1/28
    [23] Ramaty R, Forman M A 1987 NASA Conference Publication 2464 47 https://ui.adsabs.harvard.edu/abs/1987NASCP2464...47R
    [24] Dröege W, Schlickeiser R 1986 Astrophys. J. 305 909 doi: 10.1086/164305
    [25] Tassev Y, Velinov P I Y, Tomova D, Mateev L 2017 C.R. Acad. Bulg. Sci. 70 1437
    [26] Ellison D C, Ramaty R 1985 Astrophys. J. 298 400 doi: 10.1086/163623
  • 加载中
图(7)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  121
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-12-23
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回