留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个可靠和准确的光电产额谱模型及应用

刘昶时

刘昶时. 一个可靠和准确的光电产额谱模型及应用[J]. 机械工程学报, 2021, 70(10): 103301. doi: 10.7498/aps.70.20201729
引用本文: 刘昶时. 一个可靠和准确的光电产额谱模型及应用[J]. 机械工程学报, 2021, 70(10): 103301. doi: 10.7498/aps.70.20201729
Liu Chang-Shi. A reliable and accurate model of photoelectron yield spectrum and its applications[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 103301. doi: 10.7498/aps.70.20201729
Citation: Liu Chang-Shi. A reliable and accurate model of photoelectron yield spectrum and its applications[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 103301. doi: 10.7498/aps.70.20201729

一个可靠和准确的光电产额谱模型及应用

doi: 10.7498/aps.70.20201729
详细信息
    通讯作者:

    E-mail: lcswl@zjxu.edu.cn

  • 中图分类号: 33.60.+q, 92.60.Aa, 33.15.Hp

A reliable and accurate model of photoelectron yield spectrum and its applications

More Information
  • 摘要: 光电产额谱的实验和理论研究对所有涉及光电的材料和器件都很重要, 其中能够准确地从入射光子能量计算光电产额对最大限度地从光电产额谱获取光电材料和器件的电性能的微观信息至关重要. 本文在建立起光电产额谱满足的微分方程结合光电产额谱的特有实验结果之后找到了这个满足光电产额谱的特有实验结果下微分方程的解. 通过对实验数据进行最小二乘法非线性拟合既验证了这种方法获得的光电产额谱模型的正确性, 也得到了每一条光电产额谱的具体数学表达. 应用此模型不仅能尽可能精确可靠地计算出两种电性能略有不同的物质相互接触形成结的势垒高度, 而且由这个光电产额谱模型能够得到在结中的电子有效占有态的密度能级分布.

     

  • 图  实验和模型(6)模拟的MoS2/SiO2(半导体-绝缘体 (a), (c))和HfO2/ZCAN(金属-绝缘体(b), (d))异质结内光电产额(Y)作为入射光能量函数的结果及Y1/3Y1/2随入射光能量的变化图

    Figure  1.  $\sqrt[n]{Y} - h\nu $ and $Y - h\nu $ curves comparison between measurement and simulation of MoS2/SiO2 ((a), (c)) and HfO2/ZCAN ((b), (d)).

    图  实验和模型(6)模拟的Al0.2Ga0.3In0.5P/Al0.2Ga0.8As(半导体-半导体 (a), (c))和Pt/GaP(金属-半导体, (b), (d))异质结内光电产额(Y)作为入射光能量函数的结果及Y1/3Y1/2随入射光能量变化图

    Figure  2.  $\sqrt[n]{Y} \text- h\nu$ and $Y \text- h\nu$ plots of the experimental data and the theoretical fits in the form of Eq. (6) for both Al0.2Ga0.3In.5P/Al0.2Ga0.8As ((a), (c)) and Pt/GaP ((b), (d)) Schottky contacts.

    图  实验和模型(6)模拟的石墨烯/二氧化硅(Graphene/SiO2 (c), (d)), p型单晶硅(b)和有机半导体P3HT(a)光电产额(Y)作为入射光能量函数的结果及Y1/3随入射光能量变化图

    Figure  3.  Experimental and theoretical IPE yield as a function of photon energy for Graphene/SiO2 ((c), (d)), P3HT (a) and p-type Si (b).

    图  Pt/GaP (a), Al0.2Ga0.3In0.5P/Al0.2Ga0.8As (b), MoS2/SiO2(c)和P3HT(d)电子有效占有态的密度按照能级(能量)分布

    Figure  4.  Curves display the spectra of the effective density of the filled electronic states of the Pt/GaP (a), Al0.2Ga0.3In0.5P/Al0.2Ga0.8As (b), MoS2/SiO2(c) and P3HT (d), as the first derivative of the recorded.

    表  1  不同结中的优化参数和评价参数取值以及获得的势垒高度

    Table  1.   The best parameters and evaluation parameters for different junctions, and calculated barrier height.

    Ysat Ymin $h{\nu _1}$ k R ARE/% φ/eV
    MoS2/SiO2 .68 –.0017 4.63 20.58 .999 2.3 3.46
    HfO2/ ZCAN .53 –.0038 3.86 10.68 .999 1.5 2.43
    Al.2Ga.3In.5P/Al.2Ga.8As .90 –4477.06 1.78 55.14 .999 3.4 1.52
    单晶Si .39 –.0094 1.72 9.05 .998 3.8 1.14
    P3HT .14 –.0066 1.94 67.82 .999 1.2 1.85
    Graphene/SiO2 .22 –.049 4.75 26.94 .999 4.1 4.12
    Pt/GaP .87 –.37 1.43 142.86 .999 3.7 1.41
    R: 相关系数, ARE: 相对误差的平均值.
    下载: 导出CSV
  • [1] Hertz H 1887 Ann. Phys. 31 983
    [2] Einstein A 1905 Ann. Phys. 322 132 doi: 10.1002/andp.19053220607
    [3] Millikan R 1916 Phys. Rev. 7 18 doi: 10.1103/PhysRev.7.18
    [4] Fowler R H 1931 Phys. Rev. 38 45 doi: 10.1103/PhysRev.38.45
    [5] Liu C, Liu W L 2018 Optik 154 726 doi: 10.1016/j.ijleo.2017.10.131
    [6] Herbert B M 1977 J. Appl. Phys. 48 4729 doi: 10.1063/1.323539
    [7] Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676 doi: 10.1063/1.1721711
    [8] Hanae T, Yousaf H K, Faisal B, Bernabe M S, Mohamed E T 2019 Sol. Energy 194 932 doi: 10.1016/j.solener.2019.11.017
    [9] Daisuke Y, Tsuyoshi Y, So N, Tomoyuki Y 2012 Phys. B 407 4485 doi: 10.1016/j.physb.2012.08.004
    [10] Kun X, Caifu Z, Qin Z, Peide Y, Kang W, Curt A R, David G, Nhan V N 2012 70th Device Research Conference DOI: 10.1109/DRC.2012.6256941
    [11] Afanas’ev V V, Chou H Y A, Stesmans C, Merckling X S 2011 Microelectron. Eng. 88 1050 doi: 10.1016/j.mee.2011.03.076
    [12] Akio O, Mitsuhisa I, Katsunori M, Seiichi M 2017 Microelectron. Eng. 17825 85
    [13] Kolomiiets N M, Afanas’ev V V, Jayachandran S, Delabie A, Heyns M, Stesmans A 2016 ECS J. Solid State Sci. Technol. 5 3008
    [14] Jenkins M A, McGlone J M, Wager J F, Conley J F J 2019 J. Appl. Phys. 125 055301 doi: 10.1063/1.5066569
    [15] Sang Y L, Jaewan C, Jaehyung C, Younsoo K, HanJin L, Hyeongtag J, Hyungtak S 2017 Curr. Appl. Phys. 17 267 doi: 10.1016/j.cap.2016.12.004
    [16] Shlyakhov J, Chai M, Yang S J, Wang V V, Afanas’ev M, Houssa A Stesmans 2018 Apl. Materials 6 026801 doi: 10.1063/1.5002617
    [17] Melanie A J, Tyler K, Dustin Z A, Wei L, Nhan V N, John F, Conley J 2018 Phys. Status Solidi RRL 12 1700437 doi: 10.1002/pssr.201700437
    [18] John F G, Myles A S, Nikhil J, Kevin L, Schulte R M F, William E, McMahon E E, Perl D J F 2018 IEEE J. photovoltaics 8 626 doi: 10.1109/JPHOTOV.2017.2778567
    [19] Vadim T, Inge A, Steven B, Cedric H, Iuliana R, Afanas'ev, V, Michel H, Andre S 2019 Thin Solid Films 674 39 doi: 10.1016/j.tsf.2019.01.036
    [20] Shalish L, Kronik G S, Yoram S, Eizenberg M 2000 Appl. Phys. Lett. 77 987 doi: 10.1063/1.1288813
    [21] Seber G A F, Wild J 2003 Nonlinear Regression (New Jersey: John Wiley & Sons, Inc.) p355
    [22] Almeida J, Tiziana D, Coluzza C, Margaritondo G, Bergossi O, Spajer M, Courjon D 1996 Appl. Phys. Lett. 69 2361 doi: 10.1063/1.117525
    [23] Shi J L, Ang L K 2015 Phys. Rev. Appl. 3014002
    [24] Isao S, Mitsuyuki Y, Hitoshi K 2009 Sol. Energy Mater. Sol. Cells 93 737 doi: 10.1016/j.solmat.2008.09.017
    [25] Carsten D, Daniel M, Julien G 2010 Phys. Rev. B 81 085202 doi: 10.1103/PhysRevB.81.085202
    [26] Liu C, Li F 2012 Opt. Commun. 285 2868 doi: 10.1016/j.optcom.2012.02.049
    [27] Liu C S 2020 Polym. Test. 91 106686 doi: 10.1016/j.polymertesting.2020.106686
    [28] Szijber J 1987 J. Electron Spectrosc. Relat. Phenom. 43 113 doi: 10.1016/0368-2048(87)80023-3
    [29] Ammar S, Bogdan J, Kowalski E, Nehme A K 2007 J. Electron Spectrosc. Relat. Phenom. 160 58 doi: 10.1016/j.elspec.2007.05.005
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  197
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-18
  • 修回日期:  2020-12-22
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回