留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子核质量模型的检验

李涛 黎春青 周厚兵 王宁

李涛, 黎春青, 周厚兵, 王宁. 原子核质量模型的检验[J]. 机械工程学报, 2021, 70(10): 102101. doi: 10.7498/aps.70.20201734
引用本文: 李涛, 黎春青, 周厚兵, 王宁. 原子核质量模型的检验[J]. 机械工程学报, 2021, 70(10): 102101. doi: 10.7498/aps.70.20201734
Li Tao, Li Chun-Qing, Zhou Hou-Bing, Wang Ning. Test of nuclear mass models[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 102101. doi: 10.7498/aps.70.20201734
Citation: Li Tao, Li Chun-Qing, Zhou Hou-Bing, Wang Ning. Test of nuclear mass models[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 102101. doi: 10.7498/aps.70.20201734

原子核质量模型的检验

doi: 10.7498/aps.70.20201734
详细信息
    通讯作者:

    E-mail: litao@gxnu.edu.cn

  • 中图分类号: 21.10.Dr, 21.60.-n, 21.90.+f

Test of nuclear mass models

More Information
  • 摘要: 基于AME2016发布的基态原子核质量数据, 分别从模型的精度及实验预言的中子新幻数两方面系统比较分析了八个普适核质量模型的可靠性及预言能力. 分区系统的计算了八个核质量模型预言的核质量均方根偏差, 分析发现对现有实验数据精确度较好的是Bhagwat和WS4两个模型. 通过分析中子壳能隙随中子数的变化趋势发现KTUY, WS3和WS4三个模型可以较好地再现中子新幻数N = 32引起的突变行为, 预言了在Cl和Ar同位素链中N = 32极有可能是新的幻数. 通过分析超重区域α衰变能随中子数的变化趋势发现FRDM12, WS3和WS4三个模型均可以较好地再现N = 152, 162的子壳现象, 且预言了对于质子数Z = 108—114同位素链在N = 184处原子核的寿命相对较长.

     

  • 图  八个核质量模型对轻核(8 ≤ Z < 28)、中等-I(28 ≤ Z < 50)、中等-II(50 ≤ Z < 82)、重核(82 ≤ Z < 100)以及超重( Z ≥ 100>)五个区域质量描述的均方根偏差

    Figure  1.  Root-mean-square deviations of the mass of light (8 ≤ Z < 28), medium-I (28 ≤ Z < 50), medium-II (50 ≤ Z < 82), heavy (82 ≤ Z < 100), and super-heavy ( Z ≥ 100) are calculated by the 8 nuclear mass models.

    图  八个核质量模型的理论值与实验值的均方根偏差随ε的变化趋势

    Figure  2.  Root-mean-square deviation between the predictions of the 8 nuclear mass models and the experimental values varies with the ε.

    图  K, Ca, Sc, Ti和V同位素链的中子壳能隙随中子数的变化趋势

    Figure  3.  Variation trend of neutron shell gaps in K, Ca, Sc, Ti and V isotope chains with neutron number.

    图  八个核质量模型计算的K, Ca, Sc, Ti和V同位素链的中子壳能隙随中子数的变化趋势

    Figure  4.  Neutron shell gaps of K, Ca, Sc, Ti and V isotopic chains calculated by 8 nuclear mass models vary with the neutron number

    图  Cl和Ar同位素链中子壳能隙随中子数的变化趋势, 竖线表示误差

    Figure  5.  Variation trend of neutron shell gaps of Cl and Ar isotope chains with neutron number, the vertical bar represents the error.

    图  质子数 $ Z=100-110 $ 为偶数同位素链的α衰变能随中子数的变化趋势

    Figure  6.  Alpha decay energy of even isotope chains for the proton number $ Z=100-110 $ vary with the neutron number.

    图  八个核质量模型计算的质子数 $ Z=100-110 $ 为偶数同位素链的α衰变能随中子数的变化趋势

    Figure  7.  Alpha decay energy of even isotope chains for the proton number Z = 100-110 calculated by 8 nuclear mass models vary with the neutron number.

    图  FRDM12和WS4模型计算的质子数 $Z=112- $ $ 124$ 为偶数同位素链的α衰变能随中子数的变化趋势, 竖线表示误差

    Figure  8.  Alpha decay energy of even isotope chains for the proton number Z = 100–110 calculated by the FRDM12 and WS4 models vary with the neutron number, the vertical bar represents the error.

    表  1  八个核质量模型的基态质量、单中子分离能、单质子分离能、双中子分离能及双质子分离能的均方根偏差

    Table  1.   Root-mean-square deviations of the ground state mass, single-neutron separation energy, single-proton separation energy, two-neutron separation energy and two-proton separation energy of the 8 nuclear mass models.

    模型 M/MeV Sn/MeV Sp/MeV S2n/MeV S2p/MeV
    KTUY 0.724 0.306 0.367 0.383 0.527
    FRDM12 0.599 0.351 0.368 0.455 0.469
    HFB27 0.517 0.424 0.446 0.423 0.464
    DZ31 0.422 0.290 0.307 0.342 0.379
    INM12 0.381 0.372 0.369 0.375 0.386
    WS3 0.343 0.274 0.302 0.296 0.358
    WS4 0.302 0.260 0.278 0.276 0.326
    Bhagwat 0.301 0.282 0.296 0.306 0.329
    下载: 导出CSV
  • [1] Roubin A, Atanasov D, Blaum K, George S, Herfurth F, Kisler D, Kowalska M, Kreim S, Lunney D, Manea V, Minaya Ramirez E, Mougeot M, Neidherr D, Rosenbusch M, Schweikhard L, Welker A, Wienholtz F, Wolf R N, Zuber K 2017 Phys. Rev. C 96 014310 doi: 10.1103/PhysRevC.96.014310
    [2] Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322 doi: 10.1103/PhysRevC.81.044322
    [3] Wang Y Z, Gao Y H, Cui J P, Gu J Z 2020 Commun. Theor. Phys. 72 025303 doi: 10.1088/1572-9494/ab6906
    [4] Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320 doi: 10.1103/PhysRevC.90.024320
    [5] Xu X, Wang M, Zhang Y H, Xu H S, Shuai P, Tu X L, Yuri A L, Zhou X H, Sun B H, Yuan Y J, Xia J W, Yang J C, Klaus B, Chen R J, Chen X C, Fu C Y, Ge Z, Hu Z G, Huang W J, Liu D W, Lan Y H, Ma X W, Mao R S, Uesaka T, Xiao G Q, Xing Y M, Yamaguchi T, Yamaguchi Y, Zeng Q, Yan X L, Zhao H W, Zhao T C, Zhang W, Zhan W L 2015 Chin. Phys. C 39 104001 doi: 10.1088/1674-1137/39/10/104001
    [6] Rosenbusch M, Ascher P, Atanasov D, Barbieri C, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, Cipollone A, George S, Herfurth F, Kowalska M, Kreim S, Lunney D, Manea V, Navrátil P, Neidherr D, Schweikhard L, Somà V, Stanja J, Wienholtz, F, Wolf R N, Zuber K 2015 Phys. Rev. Lett. 114 202501 doi: 10.1103/PhysRevLett.114.202501
    [7] Reiter M P, Ayet San Andrés S, Dunling E, Kootte B, Leistenschneider E, Andreoiu C, Babcock C, Barquest B R, Bollig J, Brunner T, Dillmann I, Finlay A, Gwinner G, Graham L, Holt J D, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, McKay J E, Paul S F, Steinbrügge R, Thompson R, Tracy J L, Jr, Wieser M E, Will C, Dickel T, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. C 98 024310 doi: 10.1103/PhysRevC.98.024310
    [8] Leistenschneider E, Reiter M P, Ayet San Andrés S, Kootte B, Holt J D, Navrátil P, Babcock C, Barbieri C, Barquest B R, Bergmann J, Bollig J, Brunner T, Dunling E, Finlay A, Geissel H, Graham L, Greiner F, Hergert H, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, Leach K G, Lippert W, McKay J E, Paul S F, Schwenk A, Short D, Simonis J, Somà V, Steinbrügge R, Stroberg S R, Thompson R, Wieser M E, Will C, Yavor M, Andreoiu C, Dickel T, Dillmann I, Gwinner G, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. Lett. 120 062503 doi: 10.1103/PhysRevLett.120.062503
    [9] Michimasa S, Kobayashi M, Kiyokawa Y, Ota S, Ahn D S, Baba H, Berg G P A, Dozono M, Fukuda N, Furuno T, Ideguchi E, Inabe N, Kawabata T, Kawase S Kisamori K, Kobayashi K, Kubo T, Kubota Y, Lee C S, Matsushita M, Miya H, Mizukami A, Nagakura H, Nishimura D, Oikawa H, Sakai H, Shimizu Y, Stolz A, Suzuki H, Takaki M, Takeda H, Takeuchi S, Tokieda H, Uesaka T, Yako K, Yamaguchi Y, Yanagisawa Y, Yokoyama R, Yoshida K, Shimoura S 2018 Phys. Rev. Lett. 121 022506 doi: 10.1103/PhysRevLett.121.022506
    [10] Mougeot M, Atanasov D, Blaum K, Chrysalidis K, Goodacre T D, Fedorov D, Fedosseev V, George S, Herfurth F, Holt J D, Lunney D, Manea V, Marsh B, Neidherr D, Rosenbusch M, Rothe S, Schweikhard L, Schwenk A, Seiffert C, Simonis J, Stroberg S R, Welker A, Wienholtz F, Wolf R N, Zuber K 2018 Phys. Rev. Lett. 120 232501 doi: 10.1103/PhysRevLett.120.232501
    [11] Manea V, Karthein J, Atanasov D, Bender M, Blaum K, Cocolios T E, Eliseev S, Herlert A, Holt J D, Huang W J, Litvinov Y A, Lunney D, Menéndez J, Mougeot M, Neidherr D, Schweikhard L, Schwenk A, Simonis J, Welker A, Wienholtz F, Zuber K 2020 Phys. Rev. Lett. 124 092502 doi: 10.1103/PhysRevLett.124.092502
    [12] Erler J, Birge N, Kortelainen M, Nazarewicz W, Olsen E, Perhac A M, Stoitsov M 2012 Nature 486 509 doi: 10.1038/nature11188
    [13] Ramirez E M, Ackermann D, Blaum K, Block M, Droese C, Düllmann C E, Dworschak M, Eibach M, Eliseev S, Haettner E, Herfurth F, Heßberger F P, Hofmann S, Ketelaer J, Marx G, Mazzocco M, Nesterenko D, Novikov Y N, Plaß W R, Rodríguez D, Scheidenberger C, Schweikhard L, Thirolf P G, Weber C 2012 Science 337 1207 doi: 10.1126/science.1225636
    [14] Hamilton J H, Hofmann S, Oganessian Y T 2013 Annu. Rev. Nucl. Part. Sci. 63 383 doi: 10.1146/annurev-nucl-102912-144535
    [15] 周善贵 2014 物理 43 817 doi: 10.7693/wl20141206

    Zhou S G 2014 Physics 43 817 doi: 10.7693/wl20141206
    [16] 周善贵 2017 原子核物理评论 34 318 doi: 10.11804/NuclPhysRev.34.03.318

    Zhou S G 2017 Nucl. Phys. Rev. 34 318 doi: 10.11804/NuclPhysRev.34.03.318
    [17] Li P C, Zhang H F, Wang Y J 2017 Chin. Phys. C 41 114103 doi: 10.1088/1674-1137/41/11/114103
    [18] Düllmann C E, Block M 2018 Sci. Am. 318 46 doi: 10.1038/scientificamerican0318-46
    [19] Nazarewicz W 2018 Nat. Phys. 14 537 doi: 10.1038/s41567-018-0163-3
    [20] 李竹, 牛中明, 孙保华, 王宁, 孟杰 2012 物理学报 61 072601 doi: 10.7498/aps.61.072601

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601 doi: 10.7498/aps.61.072601
    [21] 何建军, 周小红, 张玉虎 2013 物理 42 484 http://www.wuli.ac.cn/CN/abstract/abstract55150.shtml

    He J J, Zhou X H, Zhang Y H 2013 Physics 42 484 http://www.wuli.ac.cn/CN/abstract/abstract55150.shtml
    [22] 李竹, 孙保华, 孟杰 2013 物理 42 505 http://www.wuli.ac.cn/CN/abstract/abstract55152.shtml

    Li Z, Sun B H, Meng J 2013 Physics 42 505 http://www.wuli.ac.cn/CN/abstract/abstract55152.shtml
    [23] Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšic T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172 doi: 10.1016/j.physletb.2013.04.048
    [24] Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330 doi: 10.1103/PhysRevC.100.024330
    [25] Li Z, Miu Z M, Sun B H 2019 Sci. China, Ser. G 62 982011 doi: 10.1007/s11433-018-9355-y
    [26] 唐晓东, 李阔昂 2019 物理 48 633 doi: 10.7693/wl20191002

    Tang X D, Li K A 2019 Physics 48 633 doi: 10.7693/wl20191002
    [27] Möler P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1 doi: 10.1016/j.adt.2018.03.003
    [28] 王猛, 张玉虎, 周小红 2020 中国科学: 物理学力学天文学 50 052006 doi: 10.1360/SSPMA-2019-0308

    Wang M, Zhang Y H, Zhou X H 2020 Sci. Sin.Phys. Mech. Astron. 50 052006 doi: 10.1360/SSPMA-2019-0308
    [29] Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003 doi: 10.1088/1674-1137/41/3/030003
    [30] Möler P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1 doi: 10.1016/j.adt.2015.10.002
    [31] Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305 doi: 10.1143/PTP.113.305
    [32] Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304 doi: 10.1103/PhysRevC.82.044304
    [33] Liu M, Wang N, Deng Y G, Wu X Z 2011 Phys. Rev. C 84 014333 doi: 10.1103/PhysRevC.84.014333
    [34] Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215 doi: 10.1016/j.physletb.2014.05.049
    [35] Bhagwat A 2014 Phys. Rev. C 90 064306 doi: 10.1103/PhysRevC.90.064306
    [36] Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 024308 doi: 10.1103/PhysRevC.88.024308
    [37] Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 061302(R doi: 10.1103/PhysRevC.88.061302
    [38] Goriely S, Chamel N, Pearson J M 2016 Phys. Rev. C 93 034337 doi: 10.1103/PhysRevC.93.034337
    [39] Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785 doi: 10.1143/PTP.113.785
    [40] Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121-122 1 doi: 10.1016/j.adt.2017.09.001
    [41] Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23(R doi: 10.1103/PhysRevC.52.R23
    [42] Zuker A P 2008 Rev. Mex. Fís. 54 129
    [43] Nayak R C, Satpathy L 2012 At. Data Nucl. Data Tables 98 616 doi: 10.1016/j.adt.2011.12.003
    [44] Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 89 024311 doi: 10.1103/PhysRevC.89.024311
    [45] Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 90 017302 doi: 10.1103/PhysRevC.90.017302
    [46] Sobiczewski A, Litvinov Y A, Palczewski M 2018 At. Data Nucl. Data Tables 119 1 doi: 10.1016/j.adt.2017.05.001
    [47] Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B H 2014 Phys. Rev. C 90 014303 doi: 10.1103/PhysRevC.90.014303
    [48] Hua X M, Heng T H, Niu Z M, Sun B H, Guo J Y 2012 Sci. China, Ser. G 55 2414 doi: 10.1007/s11433-012-4943-y
    [49] Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311 doi: 10.1103/PhysRevC.100.054311
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  205
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 修回日期:  2020-12-30
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回