留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于简并四波混频的双信道双频段增益谱

王丹 郭瑞翔 戴玉鹏 周海涛

王丹, 郭瑞翔, 戴玉鹏, 周海涛. 基于简并四波混频的双信道双频段增益谱[J]. 机械工程学报, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
引用本文: 王丹, 郭瑞翔, 戴玉鹏, 周海涛. 基于简并四波混频的双信道双频段增益谱[J]. 机械工程学报, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
Wang Dan, Guo Rui-Xiang, Dai Yu-Peng, Zhou Hai-Tao. Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
Citation: Wang Dan, Guo Rui-Xiang, Dai Yu-Peng, Zhou Hai-Tao. Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778

基于简并四波混频的双信道双频段增益谱

doi: 10.7498/aps.70.20201778
详细信息
    通讯作者:

    E-mail: wangdan63@sxu.edu.cn

  • 中图分类号: 42.50.-p, 42.50.Gy, 42.65.Ky, 42.50.Nn

Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands

More Information
  • 摘要: 基于大规模光通信中频分复用的需求, 本文以热原子的简并四波混频为模型, 研究了具有双频段特性的双信道增益光谱. 一束缀饰场诱导激发态能级发生分裂, 由于量子干涉效应, 四波混频信号的增益在双光子共振处被抑制, 从而使增益谱线的包络由单频段转变为“M”型的双频段结构. 同时, 缀饰场还提高了相干基态的原子布居, 进一步增强了四波混频信号的强度. 最终实验上在铯原子气室内获得了一对具备双频段的双信道高增益光谱, 并通过调节缀饰场的强度和频率失谐, 实现了对双增益峰频率间隔的有效操控.

     

  • 图  能级图与光场空间波矢量配置图 (a) 二能级DFWM; (b) Λ型三能级dressed-DFWM; (c) 光场空间矢量的相位配置图

    Figure  1.  Energy level and laser fields’ geometric configuration: (a) Two-level DFWM; (b) Λ-type three-level dressed-DFWM; (c) phase-matching configuration of laser fields’ wave vectors.

    图  FWM强度增益谱的理论模拟曲线, 其中虚线为DFWM, 实线为dressed-DFWM, 使用参数为: ${\varOmega _1} \!=\! {\varOmega _2} \!=\! 2{\text{π}} \cdot 110\;{\rm{MHz}}$ , ${\varOmega _{\rm{p}}} = 2{\text{π}} \cdot 10\;{\rm{MHz}}$ , ${\varGamma _{10}} = 2{\text{π}} \cdot 1\; {\rm{kHz}}$ , ${\varGamma _{21}} = {\varGamma _{11}} = 2{\text{π}} \cdot 4.6 $ $ \;{\rm{MHz}}$ , $T = 60 \;{ ^ \circ }{\rm{C}}$

    Figure  2.  The theoretical curves of FWM intensity gain spectrum, the dashed curve is for the DFWM, and the solid curve is for the dressed-DFWM. The parameters: ${\varOmega _1} = {\varOmega _2} = 2{\text{π}} \cdot 110\;{\rm{MHz}}$ , ${\varOmega _{\rm{p}}} = 2{\text{π}} \cdot 10\;{\rm{MHz}}$ , ${\varGamma _{10}} = 2{\text{π}} \cdot 1 $ $ \; {\rm{kHz}}$ , ${\varGamma _{21}} = {\varGamma _{11}} = 2{\text{π}} \cdot 4.6\;{\rm{MHz}}$ , $T = 60 \;{ ^ \circ }{\rm{C}}$ .

    图  实验装置示意图, 双向箭头代表光场偏振方向, GT: 格兰-泰勒棱镜, S: 光屏, PD: 光电探测器

    Figure  3.  The sketch of experimental setup. The double-headed arrow stands for the light polarization. GT: Glan-Taylor prism, S: screen, PD: photo detector.

    图  光斑图样与增益谱线 (a), (b) 关闭泵浦场 ${E_1}$ 时的EIT效应; (c), (d) 关闭缀饰场 ${E_2}$ 时的DFWM效应; (e), (f) ${E_1}$ , ${E_2}$ 同时打开时的Dressed-DFWM效应. 实验参数: 泵浦场光功率 ${P_1} = 40 \;{\rm{ mW}}$ , 缀饰场光功率 ${P_2} = 40 \;{\rm{ mW}}$ , 缀饰场失谐 $ {\varDelta _2} = 0$

    Figure  4.  Laser beams’ pattern and gain spectrum: (a), (b) the EIT effect when the pump field ${E_1}$ is turned off; (c), (d) the DFWM effect when the dressed field ${E_2}$ is turned off; (e), (f) the Dressed-DFWM effect when both ${E_1}$ and ${E_2}$ are turned on. Experimental parameters: the pump field power: ${P_1} = 40 \;{\rm{ mW}}$ , the dressed field power: ${P_2} = 40\;{\rm{ mW}}$ , the dressed field detuning $ {\varDelta _2} = 0$ .

    图  缀饰场失谐 $ {\varDelta _2}$ 分别为 (i) 0, (ii) $ 2{\text{π}} \cdot 100 \;{\rm{MHz}}$ 以及 (iii) $ 2{\text{π}} \cdot 200 \;\;{\rm{MHz}}$ 的增益谱 (a) 探测光信道 ${E_{\rm{p}}}$ ; (b) DFWM光信道 ${E_{\rm{f}}}$ . 实验参数: ${P_1} = 40 \;{\rm{mW}}$ , ${P_2} = 40 \;{\rm{mW}}$ , ${P_{\rm{p}}} = 30\;{\rm{\text{μ} W}}$

    Figure  5.  Gain spectrum with dressed field detuning $ {\varDelta _2}$ at (i) $ 0$ , (ii) $ 2{\text{π}} \cdot 100 \;{\rm{MHz}}$ , and (iii) $ 2{\text{π}} \cdot 200 \;\;{\rm{MHz}}$ : (a) The probe channel ${E_{\rm{p}}}$ ; (b) the DFWM channel ${E_{\rm{f}}}$ . Experimental parameters: ${P_1} = 40 \;{\rm{mW}}$ , ${P_2} = 40 \;{\rm{mW}}$ , ${P_{\rm{p}}} = 30\;{\rm{\text{μ} W}}$ .

    图  (a), (b) 固定 $ {\varDelta _2} = 0$ 时缀饰场功率 $P_2$ 分别为 (i) $ 10\;{\rm{mW}}$ , (ii) $ 50\;{\rm{mW}}$ 以及 (iii) $ 100\;{\rm{mW}}$ 的增益谱 (a) ${E_{\rm{p}}}$ 信道; (b) ${E_{\rm{f}}}$ 信道; (c), (d) AT 分裂间距随缀饰场拉比频率变化的关系曲线: (c) $ {\varDelta _2} = 0$ , (d) $ {\varDelta _2} = 2{{\pi}} \cdot 200\;{\rm{MHz}}$ . 实验参数: ${P_1} \!=\! 40 \;{\rm{mW}}$ , ${P_{\rm{p}}} \!=\! 30 \;{\rm{\text{μ}W}}$

    Figure  6.  (a, b) Gain spectrum with dressed power at (i) $ 10\;{\rm{mW}}$ , (ii) $ 50\;{\rm{mW}}$ , and (iii) $ 100\;{\rm{mW}}$ when $ {\varDelta _2} = 0$ . (a) The ${E_{\rm{p}}}$ channel; (b) the ${E_{\rm{f}}}$ channel; (c), (d) the curves for the AT splitting versus the dressed field’s Rabi frequencies: (c) $ {\varDelta _2} = 0$ , (d) $ {\varDelta _2} = $ $ 2{\text{π}} \cdot 200\;{\rm{MHz}}$ . Experimental parameters: ${P_1} = 40 \;{\rm{mW}}$ , ${P_{\rm{p}}} = 30 \;{\rm{\text{μ} W}}$ .

  • [1] Lukin M D, Matsko A B, Fleischhauer M, Scully M O 1999 Phys. Rev. Lett. 82 1847 doi: 10.1103/PhysRevLett.82.1847
    [2] Balic V, Braje D A, Kolchin P, Yin G Y, Harris S E 2005 Phys. Rev. Lett. 94 183601 doi: 10.1103/PhysRevLett.94.183601
    [3] McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178 doi: 10.1364/OL.32.000178
    [4] Motomura K, Tsukamoto M, Wakiyama A, Harada K, Mitsunaga M 2005 Phys. Rev. A 71 043817 doi: 10.1103/PhysRevA.71.043817
    [5] Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X, Zhu S Y 2014 Phys. Rev. A 83 033813 doi: 10.1103/PhysRevA.89.033813
    [6] Ma R, Liu W, Qin Z Z, Jia X J, Gao J R 2017 Phys. Rev. A 96 043843 doi: 10.1103/PhysRevA.96.043843
    [7] Swaim J D, Glasser R T 2017 Phys. Rev. A 96 033818 doi: 10.1103/PhysRevA.96.033818
    [8] Wang D, Hu L Y, Pang X M, Zhang J X, Zhu S Y 2013 Phys. Rev. A 88 042314 doi: 10.1103/PhysRevA.88.042314
    [9] Qin Z Z, Cao L M, Wang H L, Marino A M, Zhang W P, Jing J T 2014 Phys. Rev. Lett. 113 023602 doi: 10.1103/PhysRevLett.113.023602
    [10] Boyer V, Marino A M, Lett P D 2008 Phys. Rev. Lett. 100 143601 doi: 10.1103/PhysRevLett.100.143601
    [11] Pan X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W, Jing J T 2019 Phys. Rev. Lett. 123 070506 doi: 10.1103/PhysRevLett.123.070506
    [12] Boyer V, McCormick C F, Arimondo E, Lett P D 2007 Phys. Rev. Lett. 99 143601 doi: 10.1103/PhysRevLett.99.143601
    [13] Jing J T, Zhou Z F, Liu C J, Qin Z Z, Fang Y M, Zhou J, Zhang W P 2014 Appl. Phys. Lett. 104 151103 doi: 10.1063/1.4871384
    [14] Pooser R C, Marino A M, Boyer V, Jones K M, Lett P D 2009 Phys. Rev. Lett. 103 010501 doi: 10.1103/PhysRevLett.103.010501
    [15] Kong J, Hudelist F, Ou Z Y, Zhang W P 2013 Phys. Rev. Lett. 111 033608 doi: 10.1103/PhysRevLett.111.033608
    [16] Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049 doi: 10.1038/ncomms4049
    [17] Liu W, Ma R, Zeng L, Qin Z Z, Su X L 2019 Opt. Lett. 44 2053 doi: 10.1364/OL.44.002053
    [18] Zhou H T, Li R F, Dai Y P, Wang D, Wu J Z, Zhang J X 2019 J. Phys. B: At. Mol. Opt. Phys. 52 185002 doi: 10.1088/1361-6455/ab36b0
    [19] Zhang Y P, Xiao M 2007 Opt. Express 15 7182 doi: 10.1364/OE.15.007182
    [20] Zuo Z C, Sun J, Liu X, Wu L A, Fu P M 2007 Phys. Rev. A 75 023805 doi: 10.1103/PhysRevA.75.023805
    [21] Zhang Y P, Anderson B, Xiao M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 045502 doi: 10.1088/0953-4075/41/4/045502
    [22] Li C B, Zheng H B, Zhang Y P, Nie Z Q, Song J P, Xiao M 2009 Appl. Phys. Lett. 95 041103 doi: 10.1063/1.3189813
    [23] 李祥, 李培英 2015 激光与光电子学进展 52 051901 doi: 10.3788/LOP52.051901

    Li X, Li P Y 2015 Las. Optoelect. Prog. 52 051901 doi: 10.3788/LOP52.051901
    [24] 桑苏玲 2019 激光与光电子学进展 56 081901 doi: 10.3788/LOP56.081901

    Sang S L 2019 Las. Optoelect. Prog. 56 081901 doi: 10.3788/LOP56.081901
    [25] Su J J, Yu I A 2003 Chin. J. Phys. 41 627
    [26] Novikova I, Matsko A B, Welch G R 2002 J. Mod. Opt. 49 2565 doi: 10.1080/0950034021000011293
    [27] Grischkowsky D 1970 Phys. Rev. Lett. 24 866 doi: 10.1103/PhysRevLett.24.866
  • 加载中
图(6)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  111
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 修回日期:  2020-11-20
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回