留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期性分流微通道的结构设计及散热性能

王晗 袁礼 王超 王如志

王晗, 袁礼, 王超, 王如志. 周期性分流微通道的结构设计及散热性能[J]. 机械工程学报, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
引用本文: 王晗, 袁礼, 王超, 王如志. 周期性分流微通道的结构设计及散热性能[J]. 机械工程学报, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
Wang Han, Yuan Li, Wang Chao, Wang Ru-Zhi. Structure and thermal properties of periodic split-flow microchannels[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
Citation: Wang Han, Yuan Li, Wang Chao, Wang Ru-Zhi. Structure and thermal properties of periodic split-flow microchannels[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802

周期性分流微通道的结构设计及散热性能

doi: 10.7498/aps.70.20201802
详细信息
    通讯作者:

    E-mail: wrz@bjut.edu.cn

  • 中图分类号: 44.05.+e, 44.10.+i, 44.15.+a, 44.20.+b

Structure and thermal properties of periodic split-flow microchannels

More Information
  • 摘要: 微通道散热器在集成电路中具有重要应用, 但目前传统的长直微通道散热过程导致温度不均匀, 散热效率较低. 本文设计了一种周期性分流微结构并与传统微通道进行集成, 实现了一种高效率的周期性分流微通道散热器. 基于以上周期性分流微通道, 系统研究了单根微通道内微结构数目、微结构的排布方式及结构参数对其散热性能的影响. 结果表明, 引入的分流微结构可增大换热面积、打破原有层流边界层、促进冷/热冷却液混合、显著改善微通道散热性能. 在100 W/cm2的热流密度下, 入口端冷却液流速为1.18 m/s时, 单根微通道内引入9组微结构后, 其最高温度下降约24 K, 热阻下降约44%, 努塞尔数增大约124%, 整体传热性能(PEC)达1.465. 进一步地, 微结构采用交错渐变的周期排布方式, 沿流动方向逐渐变宽的扰流元使得冷却液被充分利用, 减少了高/低温区的存在且缓解了散热面沿流动方向存在的温度梯度, 压降损失相较于均匀排布也有一定程度的降低, 有效提升了散热效率. 本文提出的周期性分流微通道将在大功率集成电路及电子冷却领域中具有广阔的应用前景.

     

  • 图  长直微通道散热器结构示意图 (a)长直微通道散热器; (b)单根微通道截面

    Figure  1.  Schematic diagram of the long straight microchannel heat sink: (a) Long straight microchannel heat sink; (b) cross section of a single microchannel

    图  分流微通道结构示意图 (a)分流微通道散热器; (b)分流微结构局部俯视图

    Figure  2.  Schematic diagram of the split-flow microchannel structure: (a) Split-flow microchannel heat sink; (b) Partial top view of the split-flow microstructure

    图  含有不同数量及排布方式微结构的单/双根微通道示意图: SM1 (0组); SM2 (3组); SM3 (9组); SM4 (15组); DM1 (交错排布); DM2 (渐密排布); DM3 (渐变排布); DM4(交错渐变排布)

    Figure  3.  Schematic diagram of single/double microchannels with different numbers and arrangements of microstructures: SM1 (0 group); SM2 (3 groups); SM3 (9 groups); SM4 (15 groups); DM1 (staggered arrangement); DM2 (gradually arranged); DM3 (gradient arrangement); DM4 (staggered gradient arrangement)

    图  (a) SM1—SM4微通道内主流线方向流体的压力变化; (b) SM3及DM1—DM4在不同入口端流速下的压降损失

    Figure  4.  (a)Pressure change of the fluid in the direction of the main flow line in the SM1–SM4 microchannel; (b) the pressure drop loss of SM3 and DM1–DM4 at different inlet flow rates.

    图  SM2中微结构附近局部流体的压力变化切面云图

    Figure  5.  Cross-sectional cloud diagram of pressure change of local fluid near the microstructure in SM2

    图  整体热阻与泵送功率的关系 (a) SM1—SM4; (b) SM3, DM1—DM4

    Figure  6.  Relationship between overall thermal resistance and pumping power: (a) SM1–SM4; (b) SM3, DM1–DM4

    图  流体在SM2微通道内不同位置的流速分布

    Figure  7.  Flow velocity distribution of fluid at different positions in the SM2 microchannel

    图  不同位置流速切面图

    Figure  8.  Cross-sectional view of flow velocity at different locations

    图  微通道底面最高温度与入口端流速的关系 (a) SM1—SM4; (b) SM3及DM1—DM4

    Figure  9.  Relationship between the maximum temperature on the bottom of the microchannel and the flow rate at the inlet: (a) SM1–SM4; (b) SM3 and DM1–DM4

    图  10  不同情况下底面上沿主流动方向上温度变化 (a) SM1—SM4; (b) SM3及DM1—DM4

    Figure  10.  Temperature changes along the main flow direction on the bottom surface under different conditions: (a) SM1–SM4; (b) SM3 and DM1–DM4.

    图  11  不同情况下换热面温度分布云图

    Figure  11.  Cloud diagram of temperature distribution of heat exchange surface under different conditions.

    图  12  微通道散热器整体热阻与入口雷诺数的关系

    Figure  12.  The relationship between the overall thermal resistance of the microchannel radiator and the entrance Reynolds number.

    图  13  (a)不同情况下努塞尔数与入口端雷诺数的关系; (b)不同情况PEC与入口雷诺数的关系

    Figure  13.  (a) The relationship between Nusselt number and inlet Reynolds number under different conditions; (b) the relationship between performance evaluation criterion and inlet Reynolds number under different conditions.

    表  1  不同温度下水的物理参数

    Table  1.   Physical parameters of water at different temperatures

    温度
    T/K
    密度 ρ/
    (kg·m–3)
    恒压热容 cp/
    (J·kg–1·K–1)
    导热系数 κ/
    (W·m–1·K–1)
    动态黏度 μ/
    (10–4Pa·s)
    293.15 998.2 4186.9 0.59423 10.093
    303.15 995.62 4179.7 0.61055 7.96
    313.15 992.2 4176.5 0.62516 6.51
    323.15 988.05 4176.8 0.6381 5.47
    333.15 983.22 4180.2 0.64942 4.70
    343.15 977.78 4186.3 0.65916 4.10
    353.15 971.78 4194.8 0.66738 3.59
    363.15 965.3 4205.4 0.67413 3.17
    373.15 958.39 4218.2 0.67944 2.82
    383.15 958.39 4233 0.68337 2.53
    下载: 导出CSV

    表  2  硅的物理参数

    Table  2.   Physical parameters of silicon.

    材料
    物性
    密度ρ/
    (kg·m–3)
    恒压热容 cp/
    (J·kg–1·K–1)
    导热系数k/
    (W·m–1·K–1)
    2329 700 130
    下载: 导出CSV

    表  3  网格独立性研究

    Table  3.   Grid independence research

    网格1893083 网格21128905 网格31414841 网格41702482 网格51916125 网格63475672
    压降损失( $ \Delta P $) 4195.0 4287.0 4341.2 4379.9 4409.6 4406.1
    最高温度(Tm) 353.05 352.65 352.32 351.94 351.88 351.87
    误差 4.8%; 0.33% 2.7%; 0.22% 1.47%; 0.13% 0.59%; 0.020% 0.079%; 0.0028% 基准
    下载: 导出CSV
  • [1] 刘益才 2006 电子器件 29 296 doi: 10.3969/j.issn.1005-9490.2006.01.082

    Liu Y C 2006 Chin. J. Electron. 29 296 doi: 10.3969/j.issn.1005-9490.2006.01.082
    [2] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M 2020 Nat. Photonics 14 37 doi: 10.1038/s41566-019-0547-7
    [3] Murshed S M S, Castro C A N D 2017 Renewable Sustainable Energy Rev. 78 821 doi: 10.1016/j.rser.2017.04.112
    [4] Zhang Z W, Ouyang Y, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep. 860 1 doi: 10.1016/j.physrep.2020.03.001
    [5] Xu X F, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704 doi: 10.1002/adfm.201904704
    [6] Ma Y L, Zhang Z W, Chen J G, Kimmo S, Sebastian V, Chen J 2018 Carbon 135 263 doi: 10.1016/j.carbon.2018.04.030
    [7] Dmitry A, Chen J, Walther J H, Giapis K P, Panagiotis A, Petros K 2015 Nano Lett. 15 5744 doi: 10.1021/acs.nanolett.5b03024
    [8] 刘一兵 2007 电子工艺技术 28 286 doi: 10.3969/j.issn.1001-3474.2007.05.011

    Liu Y B 2007 Electron. Process Technol. 28 286 doi: 10.3969/j.issn.1001-3474.2007.05.011
    [9] Tuckerman D B, Pease R F W 1981 IEEE Electron Device Lett. 2 126 doi: 10.1109/EDL.1981.25367
    [10] 裘腾威, 刘敏, 刘源, 张祎, 金涨军 2020 低温与超导 48 85

    Qiu T W, Liu M, Liu Y, Zhang W, Jin Z J J 2020 Cryog. Supercond. 48 85
    [11] 裘腾威, 刘敏, 刘源, 张祎, 张威 2020 热科学与技术 19 339

    Qiu T W, Liu M, Liu Y, Zhang W, Zhang W 2020 J. Therm. Sci. Tech. 19 339
    [12] Qi Z, Zheng Y, Zhu X, Wei J, Liu J, Chen L, Li C 2020 Vacuum 177 109377 doi: 10.1016/j.vacuum.2020.109377
    [13] Khan M Z U, Uddin E, Akbar B, Akram N, Naqvi A A, Sajid M, Ali Z, Younis M Y, Garcia Marquez F P 2020 Nanomaterials 10 1796 doi: 10.3390/nano10091796
    [14] Bahiraei M, Monavari A, Naseri M, Moayedi H 2020 Int. J. Heat Mass Transfer 151 119359 doi: 10.1016/j.ijheatmasstransfer.2020.119359
    [15] Rubio-Jimenez C A, Hernandez-Guerrero A, Cervantes J G, Lorenzini-Gutierrez D, Gonzalez-Valle C U 2016 Appl. Therm. Eng. 95 374 doi: 10.1016/j.applthermaleng.2015.11.037
    [16] 俞炜, 邓梓龙, 吴苏晨, 于程, 王超 2019 物理学报 68 054701 doi: 10.7498/aps.68.20181877

    Yu W, Deng Z L, Wu S C, Yu C, Wang C 2019 Acta. Phys. Sin. 68 054701 doi: 10.7498/aps.68.20181877
    [17] Ghaedamini H, Salimpour M R, Mujumdar A S 2011 Appl. Therm. Eng. 31 708 doi: 10.1016/j.applthermaleng.2010.10.005
    [18] 董涛, 陈运生, 杨朝初, 毕勤成, 吴会龙, 郑国平 2005 化工学报 56 1618 doi: 10.3321/j.issn:0438-1157.2005.09.004

    Dong T, Chen Y S, Yang C C, Bi Q C, Wu H L, Zheng G P 2005 J. Chem. Eng. Data. 56 1618 doi: 10.3321/j.issn:0438-1157.2005.09.004
    [19] Abo-Zahhad E M, Ookawara S, Radwan A, Elkady M F, El-Shazly A H 2020 Case Stud. Therm. Eng. 18 100587 doi: 10.1016/j.csite.2020.100587
    [20] Wang W, Li Y, Zhang Y, Li B, Sundén B 2019 J. Therm. Anal. Calorim. 140 1259 doi: 10.1007/s10973-019-09156-x
    [21] Bhandari P, Prajapati Y K 2021 Int. J. Therm. Sci. 159 106609 doi: 10.1016/j.ijthermalsci.2020.106609
    [22] Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 247
    [23] Xia G D, Chai L, Wang H Y, Zhou M Z, Cui Z Z 2010 Appl. Therm. Eng. 31 1208 doi: 10.1016/j.applthermaleng.2010.12.022
    [24] Wang R J, Wang J W, Lijin B Q, Zhu Z F 2018 Appl. Therm. Eng. 133 428 doi: 10.1016/j.applthermaleng.2018.01.021
    [25] Jia Y T, Xia G D, Li Y F, Ma D D, Cai B 2018 Int. Commun. Heat Mass Transfer 92 78 doi: 10.1016/j.icheatmasstransfer.2017.11.004
    [26] Xie H, Yang B, Zhang S, Song M 2020 Int. J. Energy. Res. 44 3049 doi: 10.1002/er.5135
    [27] Shen H, Wang C C, Xie G 2018 Int. J. Heat Mass Transfer 117 487 doi: 10.1016/j.ijheatmasstransfer.2017.10.025
    [28] Xie G, Shen H, Wang C C 2015 Int. J. Heat Mass Transfer 90 948 doi: 10.1016/j.ijheatmasstransfer.2015.07.034
    [29] Li Y, Wang Z, Yang J, Liu H 2020 Appl. Therm. Eng. 175 115348 doi: 10.1016/j.applthermaleng.2020.115348
    [30] Li P, Guo D, Huang X 2020 Appl. Therm. Eng. 171 115060 doi: 10.1016/j.applthermaleng.2020.115060
    [31] Mehta S K, Pati S 2019 J. Therm. Anal. Calorim. 136 49 doi: 10.1007/s10973-018-7969-1
    [32] Zhang C P, Lian Y F, Yu X F, Liu W, Teng J T, Xu T T, Hsu C H, Chang Y J, Greif R 2013 Int. J. Heat Mass Transfer 66 930 doi: 10.1016/j.ijheatmasstransfer.2013.06.073
    [33] Lee P S, Garimella S V 2006 Int. J. Heat Mass Transfer 49 3060 doi: 10.1016/j.ijheatmasstransfer.2006.02.011
    [34] Wang W, Zhang Y, Lee K S, Li B 2019 Int. J. Heat Mass Transfer 135 706 doi: 10.1016/j.ijheatmasstransfer.2019.01.115
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  153
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2020-11-24
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回