留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤

李增辉 李曙光 李建设 王璐瑶 王晓凯 王彦 龚琳 程同蕾

李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾. 一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤[J]. 机械工程学报, 2021, 70(10): 104208. doi: 10.7498/aps.70.20201825
引用本文: 李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾. 一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤[J]. 机械工程学报, 2021, 70(10): 104208. doi: 10.7498/aps.70.20201825
Li Zeng-Hui, Li Shu-Guang, Li Jian-She, Wang Lu-Yao, Wang Xiao-Kai, Wang Yan, Gong Lin, Cheng Tong-Lei. Double-trench assisted thirteen-core five-mode fibers with low crosstalk and low non-linearity[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104208. doi: 10.7498/aps.70.20201825
Citation: Li Zeng-Hui, Li Shu-Guang, Li Jian-She, Wang Lu-Yao, Wang Xiao-Kai, Wang Yan, Gong Lin, Cheng Tong-Lei. Double-trench assisted thirteen-core five-mode fibers with low crosstalk and low non-linearity[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104208. doi: 10.7498/aps.70.20201825

一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤

doi: 10.7498/aps.70.20201825
详细信息
    通讯作者:

    E-mail: shuguangli@ysu.edu.cn

  • 中图分类号: 42.81.-i, 42.79.Sz, 47.11.Fg

Double-trench assisted thirteen-core five-mode fibers with low crosstalk and low non-linearity

More Information
  • 摘要: 信息化对高速大容量光纤网络的需求日益强烈, 空分/模分复用是继波分复用之后可使通信容量翻倍的新一代光纤通信技术. 本文提出了一种双沟槽环绕型十三芯五模光纤, 以满足未来对高速大容量信息传输的需求. 针对空分-模分复用中降低串扰的目标设计优化光纤, 采用双沟槽环绕结构, 将光能量更好地限制在纤芯内, 从而减小芯间和模间串扰. 利用全矢量有限元法与功率耦合理论相结合计算并分析多芯光纤的串扰和传输特性. 经过优化结构参数, 可使光纤在1.3—1.7 μm波段内稳定传输LP01, LP11, LP21, LP02, 和LP31 5个模式; 信号在1.55 μm波长处传输60 km时, 对应于以上5个模式相邻纤芯的芯间串扰分别为–122.37, –114.76, –106.28, –100.68, –92.81 dB, 相邻模式之间的有效折射率差大于1.026 × 10–3, 芯间和模间串扰可以被有效抑制; 5个模式对应的非线性系数分别为0.74, 0.82, 0.88, 1.26, 0.93 W–1·km–1, 均可保持低非线性传输. 该光纤结构简单紧凑, 可利用气相沉积法和堆叠法制备预制棒, 进一步拉制成具有低串扰低非线性的十三芯五模光纤, 可应用于长距离高速大容量光纤传输系统.

     

  • 图  双沟槽环绕型十三芯五模光纤结构

    Figure  1.  Schematic structure of a double-trench assisted 13-core 5-LP mode fiber.

    图  相邻纤芯折射率分布

    Figure  2.  Refractive index profile of adjacent fiber-core.

    图  具有横向随机波动的两相邻纤芯之间的串扰

    Figure  3.  Crosstalk between two adjacent cores with random fluctuation along longitudinal direction.

    图  无/单/双沟槽结构中LP01模式的芯间串扰对比

    Figure  4.  No/single/double trench structure crosstalk contrast of LP01 mode.

    图  Δ2 = –0.01时芯间串扰与沟槽宽度的关系

    Figure  5.  Relation between crosstalk and trench width at Δ2 = –0.01.

    图  c1, c2 = 4 μm时串扰和Δ2的关系

    Figure  6.  Relation between crosstalk and Δ2 at c1, c2 = 4 μm.

    图  在∆1 = 0.015, 波长1.55 μm处5个模式的串扰、AeffΔneff与芯区大小的关系 (a)芯区大小和串扰的关系; (b)芯区大小和Aeff的关系; (c)芯区大小和模式折射率差的关系

    Figure  7.  The relationship between crosstalk, Aeff, Δneff of five modes and core size at 1.55 μm: (a) The relationship between core size and crosstalk; (b) the relationship between core size and Aeff; (c) the relationship between core size and Δneff.

    图  在1.55 μm处5个模式的芯间串扰、Aeff和∆neff与芯区相对折射率差Δ1的关系 (a) Δ1和芯间串扰的关系; (b) Δ1Aeff的关系; (c) Δ1和模式折射率差的关系

    Figure  8.  . The relationship between crosstalk, Aeff, ∆neff of five modes and Δ1 at 1.55 μm: (a) The relationship between Δ1 and crosstalk; (b) The relationship between Δ1 and Aeff; (c) The relationship between Δ1 and ∆neff.

    图  5-LP横向模式剖面

    Figure  9.  Transverse mode profile for 5-LP modes.

    图  10  双沟槽十三芯五模光纤芯间串扰与波长关系

    Figure  10.  Relation between wavelength and core-to-core crosstalk for the double-trench assisted 13-core 5-LP mode fiber.

    图  11  5个LP模式之间的∆neff和MDGD与波长的关系 (a) ∆neff与波长的关系; (b)相邻模式之间差分群时延与波长的关系

    Figure  11.  The relationship between ∆neff, MDGD of five modes and wavelength: (a) The relationship between ∆neff and wavelength; (b) the relationship between ∆neff and wavelength.

    图  12  5个LP模式的有效模面积Aeff和非线性系数γ与波长的关系 (a) 有效模面积Aeff与波长的关系; (b)非线性系数γ与波长的关系

    Figure  12.  The relationship between Aeff, γ of five modes and wavelength: (a) The relationship between Aeff and wavelength; (b) the relationship between γ and wavelength.

    图  13  5-LP的色散与波长的关系

    Figure  13.  Relation between dispersion and wavelength for 5-LP modes.

    表  1  光纤初始参数

    Table  1.   The initial fiber parameters

    a/μm b1/μm b2/μm c1/μm c2/μm Λ/μm R/μm Δ1 Δ2
    6 2 2 5 4 42 100 0.017 –0.01
    下载: 导出CSV

    表  2  光纤优化参数

    Table  2.   The optimal fiber performance.

    a/μm b1/μm b2/μm c1/μm c2/μm Λ/μm R/μm Δ1 Δ2
    8 2 2 4 4 42 100 0.015 –0.008
    下载: 导出CSV

    表  3  5个LP模式的串扰、有效模面积和MDGD(LPmn–LP01)

    Table  3.   Estimated values of crosstalk, effective area and MDGD(LPmn–LP01) for 5-LP modes at 1.55 μm.

    Modes Crosstalk/
    (dB/60 km)
    Aeff /μm2 MDGD/
    (ps·m–1)
    LP01 –122.37 147 0
    LP11 –114.76 134 5.855
    LP21 –106.28 125 13.452
    LP02 –100.68 87 15.799
    LP31 –92.81 118 22.314
    下载: 导出CSV
  • [1] 张伟, 陈鹤鸣 2017 光通信研究 4 26 doi: 10.13756/j.gtxyj.2017.04.008

    Zhang W, Chen H M 2017 Study on Optical Communications 4 26 doi: 10.13756/j.gtxyj.2017.04.008
    [2] Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saltoh K, Koshiba M 2011 IEICE Trans. Commun. E94B 409 doi: 10.1587/transcom.E94.B.409
    [3] Xie Y H, Pei L, Zheng J J, Zhao Q, Ning T, Li J 2020 Opt. Commun. 474 126155 doi: 10.1016/j.optcom.2020.126155
    [4] Sakamoto T, Saitoh K, Saitoh S, Shibahara K, Wada M, Abe Y, Urushibara A, Takenaga K, Mizuno T, Matsui T, Aikawa K, Miyamoto Y, Nakajima K 2018 J. Lightwave Technol. 36 1226 doi: 10.1109/JLT.2018.2797361
    [5] Mori T, Sakamoto T, Wada M, Yamamoto T, Yamamoto F 2014 Optical Fiber Communications Conference and Exhibition (OFC) San Francisco, CA Mar. 09–13, 2014
    [6] Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95 doi: 10.1016/j.yofte.2018.01.002
    [7] Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K 2017 Opt. Fiber Technol. 35 19 doi: 10.1016/j.yofte.2016.09.017
    [8] 苑立波 2019 激光与光电子学进展 56 170612 doi: 10.3788/LOP56.170612

    Yuan L B 2019 Laser. Opt. Pro. 56 170612 doi: 10.3788/LOP56.170612
    [9] 涂佳静, 乔喜慧, 隆克平 2017 光子学报 46 0106001 doi: 10.3788/gzxb20174601.0106001

    Tu J J, Qiao X H, Long K P 2017 Acta Photon. Sin. 46 0106001 doi: 10.3788/gzxb20174601.0106001
    [10] 郑斯文 2014 博士学位论文 (北京: 北京交通大学)

    Zheng S W 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)
    [11] Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saitoh K, Koshiba M 2011 Conference on Optical Fiber Communication (OFC) Los Angeles, CA Mar. 06–10, 2011
    [12] Koshiba M, Saitoh K, Kokubun Y 2009 IEICE Electron. Express 6 98 doi: 10.1587/elex.6.98
    [13] Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photonics Technol. Lett. 24 1914 doi: 10.1109/LPT.2012.2218801
    [14] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫 2015 物理学报 64 234206 doi: 10.7498/aps.64.234206

    Xu M N, Zhou G Y, Chen C, Hou Z Y, Xia C M, Zhou G, Liu H Z, Liu J T, Zhang W 2015 Acta Phys. Sin. 64 234206 doi: 10.7498/aps.64.234206
    [15] 姜姗姗, 刘艳, 邢尔军 2015 物理学报 64 064212 doi: 10.7498/aps.64.064212

    Jang S S, Liu Y, Xing E J, 2015 Acta Phys. Sin. 64 064212 doi: 10.7498/aps.64.064212
    [16] 裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶 2018 红外与激光工程 10 35 doi: 10.3788/IRLA201847.1002001

    Pei L, Wang J S, Zheng J J, Ning T G, Xie Y H, He Q, Li J 2018 Infrared and Laser Engineering 10 35 doi: 10.3788/IRLA201847.1002001
    [17] 曹原, 施伟华, 郁小松, 赵永利, 张杰 2017 光子学报 46 45 doi: 10.3788/gzxb20174602.0206002

    Cao Y, Shi W H, Yu X S, Zhao Y L, Zhang J 2017 Acta Photon. Sin. 46 45 doi: 10.3788/gzxb20174602.0206002
    [18] Gruner-Nielsen L, Sun Y, Nicholson J W, Jakobsen D, Jespersen KG, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693 doi: 10.1109/JLT.2012.2227243
    [19] 赵佳佳 2018 博士学位论文 (武汉: 华中科技大学)

    Zhao J J 2018 Ph. D. Dissertation (Wuhan: Huazhong University Science and Technology) (in Chinese)
    [20] 刘俊彦 2015 硕士学位论文 (北京: 北京邮电大学)

    Liu J Y 2015 M. S. Dissertation (Beijing: Beijing Youdian University) (in Chinese)
    [21] Qiu J C, Liu H K, Tian X X 2008 Acta Photon. Sin. 37 297 https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GZXB200802021&DbName=CJFQ2008
    [22] Wang W C, Sun C Y, Wang N, Jia H Z 2020 Opt. Commun. 471 125823 doi: 10.1016/j.optcom.2020.125823
    [23] Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, Koshiba M 2012 2012 IEEE Photonics Society Summer Topical Meeting Series Seattle, WA, USA August 27 2012 p191
    [24] Begum F, Namihira Y, Razzak SMA, Kaijage S, Miyagi K, Hai NH, Zou N 2007 Opt. Rev. 14 120 doi: 10.1007/BF02919411
    [25] Liu M, Yang J, Zhu T 2015 JETP Letters 102 274 doi: 10.1134/S0021364015170075
    [26] Wan X, Wang Z Q, Sun B, Zhang Z X 2020 Opt. Quantum Electron. 52 289 doi: 10.1007/s11082-020-02414-5
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  218
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-30
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回