Near-field imaging of femtosecond propagating surface plasmon and regulation of excitation efficiency
-
摘要: 飞秒传输表面等离激元(femtosecond propagating surface plasmon, fs-PSP)的近场成像表征和激发效率的主动控制是实现其应用的先决条件. 本文利用光发射电子显微镜对银纳米薄膜上刻蚀的凹槽耦合结构处激发的fs-PSP进行近场成像. 并系统测量了入射激光波长在720—900 nm范围内fs-PSP近电场与入射激光场干涉信号的周期和fs-PSP的波长. 在此基础上, 进一步利用飞秒双光束泵浦-探测实验证实了调节入射激光的偏振方向可实现对fs-PSP激发效率的调控. 由实验结果可知, 当入射激光偏振接近0° (P偏振)时, fs-PSP的激发效率最高, 当入射光偏振接近90° (S偏振)时, fs-PSP的激发效率最低. 相较于有限时域差分方法模拟, 在飞秒双光束泵浦-探测实验中归一化光发射电子产额随入射激光偏振方向变化的曲线出现平台区, 我们把这一现象归因于探测激光的背景噪声淹没了fs-PSP激发效率的变化. 该研究为实现fs-PSP激发效率的工程性调控和优化等离激元器件的性能奠定了基础.
-
关键词:
- 光发射电子显微镜 /
- 飞秒传输表面等离激元 /
- 近场成像 /
- 激发效率的调控
Abstract: Near-field imaging and active control of excitation efficiency of femtosecond propagating surface plasmon (fs-PSP) are the prerequisites for its application. Here, we perform near-field imaging of fs-PSP excited at the trench etched on silver nano-film by using photoemission electron microscopy (PEEM). As an excellent near-field microscopy technique of in situ imaging with a high spatial resolution (< 20 nm), it needs neither molecular reporters nor scanning probes as required in nonlinear fluorescence microscopy in nonlinear fluorescence microscopy or scanning near-field optical microscopy, both of which may potentially bias PSP derived from such measurements. The period of the interference patterns induced by the incident femtosecond laser and the laser-induced fs-PSP and the wavelength of fs-PSP in a range of 720–900 nm of the incident laser wavelength are systematically measured. The fringe period of the interference pattern between fs-PSP and the incident laser is a range of 5.9–7.7 µm, and the wavelength of fs-PSP is in a range of 700–879 nm. The experimental results are consistent with the theoretical simulation results. Furthermore, we demonstrate that the excitation efficiency of fs-PSP can be actively controlled by adjusting the polarization direction of the incident laser in the femtosecond pump-probe experiments. Specifically, it is found that when the incident laser is polarized to 0° (p-polarization light), the excitation efficiency of PSP reaches a maximum value, and when the incident light is polarized to 90° (s-polarization light), the excitation efficiency of fs-PSP is the lowest. Unlike the simulation result by the finite difference time domain (FDTD) method, a plateau area of the intensity of the photoemission signal with the polarization direction of the incident laser appears in the femtosecond pump-probe experiment. This phenomenon is attributed to the background noise of the detection laser that masks the change of the fs-PSP excitation efficiency. In a word, this research realizes the experimental measurement of the basic parameters of fs-PSP and the manipulation of fs-PSP excitation efficiency by adjusting the polarization angle of the incident laser. This research lays a foundation for realizing the engineering manipulation of fs-PSP excitation efficiency and optimizing the performance of plasmonic devices. -
图 2 (a)−(d) 750 nm入射激光, 随偏振角度变化的PEEM图像; (e) fs-PSP归一化的光发射电子产额随入射激光偏振角度变化的模拟和实验曲线
Figure 2. (a)−(d) The PEEM images of the incident laser at 750 nm, changing with the polarization angle; (e) simulation and experimental curves of fs-PSP normalized light emission electron yield with incident laser polarization angle.
图 3 (a)飞秒双光束泵浦-探测实验示意图; (b)−(e) 750 nm入射激光, 在探测光辐照区域, 随偏振角度变化的PEEM图像; (f) fs-PSP归一化的光发射电子产额随入射激光偏振角度变化的模拟和实验曲线
Figure 3. (a) Schematic diagram of femtosecond dual-beam pumping-detection experiment; (b)−(e) the PEEM images of the incident laser at 750 nm in the area irradiated by the probe light with the polarization angle; (f) the simulation and experimental curves of fs-PSP normalized light emission electron yield with the incident laser polarization angle.
表 1 fs-PSP的波长及干涉条纹周期随入射激光波长改变的数值
Table 1. The value of fs-PSP's wavelength and interference fringe period changing with the incident laser wavelength.
入射光波长 $ {\lambda }_{\rm{L}}/ $nm 720 740 760 780 800 820 840 860 880 900 fs-PSP拍频周期 $ {\lambda }_{\rm{B}}/ $µm 5.9 6.1 6.6 6.7 7.0 7.1 7.2 7.3 7.5 7.7 fs-PSP波长的理论值 $ {\lambda }_{{\rm{s}}{\rm{s}}}/ $nm 706 726 746 766 785 805 824 844 864 883 fs-PSP波长实验测得值 $ {\lambda }_{{\rm{s}}{\rm{m}}}/ $nm 700 720 744 765 784 803 821 840 859 879 -
[1] Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83 doi: 10.1038/nphoton.2009.282 [2] Ozbay E 2006 Science 311 189 doi: 10.1126/science.1114849 [3] Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Xu H X, Wang W H 2018 Chem. Rev. 118 2882 doi: 10.1021/acs.chemrev.7b00441 [4] Gong Y, Joly A G, Hu D, El-Khoury P Z, Hess W P 2015 Nano Lett. 15 3472 doi: 10.1021/acs.nanolett.5b00803 [5] Pyayt A L, Wiley B, Xia Y, Chen A, Dalton L 2008 Nat. Nanotechnol. 3 660 doi: 10.1038/nnano.2008.281 [6] Li X, Huang L, Tan Q, Bai B, Jin G 2011 Opt. Express 19 6541 doi: 10.1364/OE.19.006541 [7] Sumimura A, Ota M, Nakayama K, Ito M, Ishii Y, Fukuda M 2016 IEEE Photonics Technol. Lett. 28 2419 doi: 10.1109/LPT.2016.2597878 [8] Chang K W, Huang C C 2016 Sci. Rep. 6 19609 doi: 10.1038/srep19609 [9] Hu T, Qiu H, Zhang Z, Guo X, Liu C, Rouifed M S, Littlejohns C G, Reed G T, Wang H 2016 IEEE Photonics J. 8 4802209 doi: 10.1109/JPHOT.2016.2585113 [10] Lemke C, Schneider C, Leißner T, Bayer D, Radke J W, Fischer A, Melchior P, Evlyukhin A B, Chichkov B N, Reinhardt C, Bauer M, Aeschlimann M 2013 Nano Lett. 13 1053 doi: 10.1021/nl3042849 [11] Bettina F, Philip K, Daniel P, Grisha S, Meir O, Fu L W, Thomas W, Michael H H, Timothy J D, Frank-J M Z H, Harald G 2017 Sci. Adv. 3 e1700721 doi: 10.1126/sciadv.1700721 [12] Zu S, Han T Y, Jiang M L, Liu Z X, Jiang Q, Lin F, Zhu X, Fang Z Y 2019 Nano Lett. 19 775 doi: 10.1021/acs.nanolett.8b03850 [13] Zu S, Han T Y, Jiang M L, Lin F, Zhu X, Fang Z Y 2018 ACS Nano 12 3908 doi: 10.1021/acsnano.8b01380 [14] Han T Y, Zu S, Li Z W, Jiang M L, Zhu X, Fang Z Y 2018 Nano Lett. 18 567 doi: 10.1021/acs.nanolett.7b04705 [15] Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B, Zhu X, Fang Z Y 2018 Opto-Electron. 1 180007 doi: 10.29026/oea.2018.180007 [16] EL-Khoury P Z, Abellan P, Gong Y, Hage F S, Cottom J, Joly A G, Brydson R, Ramasse Q M, Hess W P 2016 The Anakyst 141 3562 doi: 10.1039/c6an00308g [17] Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Pelton M, Scherer N F 2012 ACS Nano 6 472 doi: 10.1021/nn203802e [18] Liu X J, Wang Y, Potma E O 2012 Appl. Phys. Lett. 101 081116 doi: 10.1063/1.4747798 [19] Zhang W H, Fang Z Y, Zhu X 2017 Chem. Rev. 117 5095 doi: 10.1021/acs.chemrev.6b00337 [20] Yin L L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano Lett. 5 1399 doi: 10.1021/nl050723m [21] Fang Z Y, Zhu X 2013 Adv. Mater. 25 3840 doi: 10.1002/adma.201301203 [22] Kubo A, Pontius N, Petek H 2007 Nano Lett. 7 470 doi: 10.1021/nl0627846 [23] Sun Q, Zu S, Misawa H 2020 J. Chem. Phys. 153 120902 doi: 10.1063/5.0013659 [24] Dąbrowski M, Dai Y N, Petek H 2017 J. Phys. Chem. Lett. 8 4446 doi: 10.1021/acs.jpclett.7b00904 [25] Ditlbacher H, Krenn J R, Hohenau A, Leitner A, Aussenegg F R 2003 Appl. Phys. Lett. 83 3665 doi: 10.1063/1.1625107 [26] Radko I P, Bozhevolnyi S I, Brucoli G, Martı′n-Moreno L, Garcıá-Vidal F G, Boltaseva A 2008 Phys. Rev. B 78 115115 doi: 10.1103/PhysRevB.78.115115 [27] Baudrion A L, León-Pérez F, Mahboub O, Hohenau A, Ditlbacher H, Garcıá-Vidal F J, Dintinger J, Ebbesen T W, Martı′n-Moreno L, R.Krenn J 2008 Opt. Express 16 3420 doi: 10.1364/OE.16.003420 [28] Lu J, Petre C, Yablonovitch E, Conway J 2007 J. Opt. Soc. Am. B 24 2268 doi: 10.1364/JOSAB.24.002268 [29] Klick A, Cruz S L, Lemke C, Großmann M, Beyer H, Fiutowski J, Rubahn H G, Mendez E R, Bauer M 2016 Appl. Phys. B 122 79 doi: 10.1007/s00340-016-6350-y [30] Zhang L X, Kubo A, Wang L, Petek H, Seideman T 2011 Phys. Rev. B 84 245442 doi: 10.1103/PhysRevB.84.245442 [31] Buckanie N M, Kirschbaum P, Sindermann S, Meyer zu J, Heringdorf F 2013 Ultramicroscopy 130 49 doi: 10.1016/j.ultramic.2013.03.007 [32] Gong Y, Joly A G, EI-Khoury P Z, Hess W P 2017 J. Phys. Chem. Lett. 8 49 doi: 10.1021/acs.jpclett.6b02509 [33] Qin Y L, Song X W, Ji B Y, Xu Y, Lin J Q 2019 Opt. Lett. 44 2935 doi: 10.1364/OL.44.002935