留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MgO基磁性隧道结温度-偏压相图的理论研究

吕杰 方贺男 吕涛涛 孙星宇

吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究[J]. 机械工程学报, 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
引用本文: 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究[J]. 机械工程学报, 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
Lü Jie, Fang He-Nan, Lü Tao-Tao, Sun Xing-Yu. Theoretical study on temperature-bias phase diagram of MgO-based magnetic tunnel junctions[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
Citation: Lü Jie, Fang He-Nan, Lü Tao-Tao, Sun Xing-Yu. Theoretical study on temperature-bias phase diagram of MgO-based magnetic tunnel junctions[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905

MgO基磁性隧道结温度-偏压相图的理论研究

doi: 10.7498/aps.70.20201905
详细信息
    通讯作者:

    E-mail: fanghn@njupt.edu.cn

  • 中图分类号: 73.43.Qt, 73.43.Jn, 73.50.-h

Theoretical study on temperature-bias phase diagram of MgO-based magnetic tunnel junctions

More Information
  • 摘要: MgO基磁性隧道结是自旋电子器件研究的热点问题, 其温度特性和偏压特性在实际应用中极其重要. 因此, 亟需在理论上计算得到MgO基磁性隧道结的温度-偏压相图. 本文构建了适用于单晶势垒层磁性隧道结的理论. 该理论将单晶势垒层视作周期性光栅, 利用光学衍射理论处理势垒层对隧穿电子的衍射, 因此可以很好地计入隧穿电子波的相干性. 根据此理论, 同时计入温度和偏压的影响计算了MgO基磁性隧道结的温度-偏压相图. 理论结果表明, 通过调节MgO基磁性隧道结的铁磁电极半交换劈裂能Δ、化学势μ以及势垒层周期势v( K h)可以优化其温度特性和偏压特性. 该结果为MgO基磁性隧道结的应用提供了坚实的理论基础.

     

  • 图  MgO基磁性隧道结示意图

    Figure  1.  Diagram of MgO-based magnetic tunnel junction.

    图  不同铁磁电极半交换劈裂能Δ下的温度-偏压相图 (a) Δ = 8 eV; (b) Δ = 9 eV; (c) Δ = 10 eV

    Figure  2.  Phase diagram of temperature and bias with variation of half the exchange splitting of the ferromagnetic electrodes Δ: (a) Δ = 8 eV; (b) Δ = 9 eV; (c) Δ = 10 eV.

    图  不同的化学势μ下的温度-偏压相图 (a) μ = 10 eV; (b) μ = 11 eV; (c) μ = 12 eV

    Figure  3.  Phase diagram of temperature and bias with variation of chemical potential μ: (a) μ = 10 eV; (b) μ = 11 eV; (c) μ = 12 eV.

    图  不同v(Kh)下的温度-偏压相图 (a) v(Kh) = 12.3 eV; (b) v(Kh) = 15.3 eV; (c) v(Kh) = 18.3 eV

    Figure  4.  Phase diagram of temperature and bias with variation of v(Kh): (a) v(Kh) = 12.3 eV; (b) v(Kh) = 15.3 eV; (c) v(Kh) = 18.3 eV.

  • [1] 韩秀峰 2008 物理 37 392 doi: 10.3321/j.issn:0379-4148.2008.06.007

    Han X F 2008 Physics 37 392 doi: 10.3321/j.issn:0379-4148.2008.06.007
    [2] Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868 doi: 10.1038/nmat1257
    [3] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508 doi: 10.1063/1.2976435
    [4] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B S, Mahesh Y S H 2004 Nat. Mater. 3 862 doi: 10.1038/nmat1256
    [5] Ma Q L, Wang S G, Zhang J, Wang Y, Ward R C C, Wang C, Kohn A, Zhang X G, Han X F 2009 Appl. Phys. Lett. 95 052506 doi: 10.1063/1.3194150
    [6] Faure-Vincent J, Tiusan C, Jouguelet E, Canet F, Sajieddine M, Bellouard C, Hehn M, Montaigne F, Schuhl A 2003 Appl. Phys. Lett. 82 4507 doi: 10.1063/1.1586785
    [7] Miao G X, Chetry K B, Gupta A, Bulter W H, Tsunekawa K, Djayaprawira D Xiao G 2006 J. Appl. Phys. 99 08T305 doi: 10.1063/1.2162047
    [8] Ishikawa T, Marukame T, Kijima H, Matsuda K I, Uemura T, Arita M, Ymamoto M 2006 Appl. Phys. Lett. 89 192505 doi: 10.1063/1.2378397
    [9] Yuasa S, Fukushima A, Kubota H, Suzuki Y, Ando K 2006 Appl. Phys. Lett. 89 042505 doi: 10.1063/1.2236268
    [10] Hayakawa J, Ikeda S, Lee Y M, Matsukura F 2006 Appl. Phys. Lett. 89 232510 doi: 10.1063/1.2402904
    [11] Hu B, Moges K, Honda Y, Liu H X, Uemura T, Yamamoto M, Inoue J, Shirai M 2016 Phys. Rev. B 94 094428 doi: 10.1103/PhysRevB.94.094428
    [12] Slonczewski J C 1989 Phys. Rev. B 39 6995 doi: 10.1103/PhysRevB.39.6995
    [13] Nozaki T, Hirohata A, Tezuka N, Sugimoto S, Inomata K 2005 Appl. Phys. Lett. 86 082501 doi: 10.1063/1.1867559
    [14] Tanaka M A, Hori T, Mibu K, Kondou K, Ono T, Kasai S, Asaka T, Ionue J 2011 J. Appl. Phys. 110 073905 doi: 10.1063/1.3642963
    [15] Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 Phys. Rev. B 78 180411 doi: 10.1103/PhysRevB.78.180411
    [16] Fang H, Zang X, Xiao M, Zhong Y, Tao Z 2020 J. Appl. Phys. 127 163902 doi: 10.1063/1.5143827
    [17] Fang H, Xiao M, Rui W, Du J 2018 J. Magn. Magn. Mater. 465 333 doi: 10.1016/j.jmmm.2018.06.028
    [18] Fang H, Xiao M, Rui W, Du J, Tao Z 2016 Sci. Rep. 6 24300 doi: 10.1038/srep24300
    [19] Matsumoto R, Fukushima A, Nagahama T, Suzuki Y, Ando K, Yuasa S 2007 Appl. Phys. Lett. 90 252506 doi: 10.1063/1.2750398
    [20] Kou X, Schmalhorst J, Thomas A, Reiss G 2006 Appl. Phys. Lett. 88 212115 doi: 10.1063/1.2206680
  • 加载中
图(4)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  135
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 修回日期:  2020-12-15
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回