留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si衬底Cu2ZnSnS4太阳能电池的数值分析

刘辉城 许佳雄 林俊辉

刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析[J]. 机械工程学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
引用本文: 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析[J]. 机械工程学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
Liu Hui-Cheng, Xu Jia-Xiong, Lin Jun-Hui. Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
Citation: Liu Hui-Cheng, Xu Jia-Xiong, Lin Jun-Hui. Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936

Si衬底Cu2ZnSnS4太阳能电池的数值分析

doi: 10.7498/aps.70.20201936
详细信息
    通讯作者:

    E-mail: xujiaxiong@gdut.edu.cn

  • 中图分类号: 88.40.H-, 88.40.hj, 88.40.fc, 73.40.Lq

Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate

More Information
  • 摘要: 在Si衬底上制备的Cu2ZnSnS4(CZTS)太阳能电池具有CZTS与Si衬底的晶格失配低的优点, 但目前其转换效率仍较低. 本文采用异质结太阳能电池仿真软件Afors-het对Si衬底CZTS太阳能电池进行数值计算. 对现有的p-CZTS/n-Si太阳能电池的计算结果表明, 在该电池结构中p-CZTS和n-Si分别起窗口层和吸收层的作用, 但p-CZTS具有高光吸收系数, 使大部分入射光无法透过p-CZTS层进而被n-Si吸收, 限制了电池的转换效率. 本文提出以p-Si作为衬底的n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池结构. 计算得到的p-CZTS/p-Si结构的暗态电流密度-电压(J–V)特性曲线均为线性曲线, 表明p-CZTS与p-Si为欧姆接触以及p-Si作为p-CZTS的背电极的可行性. 进一步计算了p-Si的厚度与掺杂浓度、p-CZTS的厚度与掺杂浓度对n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池光伏特性的影响, 在不考虑寄生串并联电阻效应和缺陷态的理想情况下, 电池的最高转换效率为28.41%. 本文计算结果表明, n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池可解决现有p-CZTS/n-Si结构存在的问题, 是一种合适的Si衬底CZTS太阳能电池结构.

     

  • 图  仿真结构示意图 (a) p-CZTS/n-Si; (b) p-CZTS/p-Si; (c) n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si

    Figure  1.  Diagrams of different structures: (a) p-CZTS/n-Si; (b) p-CZTS/p-Si; (c) n-ZnO:Al/i-ZnO/CdS/CZTS/p-Si.

    图  p-CZTS/n-Si太阳能电池性能随 (a) n-Si的厚度dn-Si, (b) n-Si的掺杂浓度Nn-Si, (c) p-CZTS的厚度dp-CZTS, (d) p-CZTS的掺杂浓度Np-CZTS的变化关系

    Figure  2.  The performances of p-CZTS/n-Si solar cell with the changes of (a) the thickness of n-Si (dn-Si), (b) the doping concentration of n-Si (Nn-Si), (c) the thickness of p-CZTS (dp-CZTS), (d) the doping concentration of p-CZTS (Np-CZTS).

    图  最优p-CZTS/n-Si太阳能电池的 (a) J–V特性曲线, (b)光谱响应, (c)载流子产生率分布图

    Figure  3.  The (a) J–V characteristic curve, (b) spectral response, (c) generation rate distribution of the optimal p-CZTS/n-Si solar cell

    图  p-CZTS/p-Si的J-V特性曲线随p-Si厚度dp-Si的变化

    Figure  4.  J-V characteristic curves of p-CZTS/p-Si with the change of the thickness of p-Si (dp-Si).

    图  p-CZTS/p-Si的J-V特性曲线随p-Si掺杂浓度Np-Si的变化

    Figure  5.  J-V characteristic curves of p-CZTS/p-Si with the change of the doping concentration of p-Si (Np-Si).

    图  p-Si掺杂浓度为 (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3时, p-CZTS/p-Si的能带图

    Figure  6.  Band diagrams of p-CZTS/p-Si when the doping concentrations of p-Si are (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3

    图  p-CZTS/p-Si的J-V特性曲线随p-CZTS掺杂浓度Np-CZTS的变化

    Figure  7.  J-V characteristic curves of p-CZTS/p-Si with the change of the doping concentration of p-CZTS (Np-CZTS).

    图  p-CZTS掺杂浓度为 (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3时, p-CZTS/p-Si的能带图

    Figure  8.  Band diagrams of p-CZTS/p-Si when the doping concentrations of p-CZTS are (a) 1 × 1015 cm–3, (b) 1 × 1017 cm–3, (c) 1 × 1019 cm–3.

    图  n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池的性能随 (a) p-Si厚度dp-Si, (b) p-Si掺杂浓度Np-Si, (c) p-CZTS厚度dp-CZTS, (d) p-CZTS掺杂浓度Np-CZTS的变化关系

    Figure  9.  The performances of n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell with the changes of (a) the thickness of p-Si (dp-Si), (b) the doping concentration of p-Si (Np-Si), (c) the thickness of p-CZTS (dp-CZTS), (d) the doping concentration of p-CZTS (Np-CZTS).

    图  10  优化的n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si太阳能电池的 (a) J–V特性曲线, (b)光谱响应, (c)内建电场, (d)能带图

    Figure  10.  The (a) J–V characteristic curve, (b) spectral response, (c) built-in electric field, (d) band diagram of the optimal n-ZnO:Al/i-ZnO/n-CdS/p-CZTS/p-Si solar cell.

    表  1  仿真参数取值

    Table  1.   Simulated parameters.

    参数 p-CZTS n-CdS i-ZnO n-ZnO p-Si n-Si
    介电常数 10 10 9 9 11.9 11.9
    电子亲和能/eV 3.8 4.2 4.6 4.6 4.05 4.05
    禁带宽度/eV 1.53 2.4 3.3 3.3 1.12 1.12
    导带有效密度/cm–3 2.2 × 1018 1.8 × 1019 2.2 × 1018 2.2 × 1018 3.32 × 1018 3.32 × 1018
    价带有效密度/cm–3 1.8 × 1019 2.4 × 1018 1.8 × 1019 1.8 × 1019 1.44 × 1019 1.44 × 1019
    电子迁移率/(cm2·V–1·s–1) 100 100 100 100 1450 1450
    空穴迁移率/(cm2·V–1·s–1) 57.6 25 25 25 500 500
    受主掺杂浓度/cm–3 变量 0 0 0 变量 0
    施主掺杂浓度/cm–3 0 1 × 1017 1 × 105 1 × 1018 0 变量
    缺陷浓度/cm–3 1 × 1012 6 × 1016 1 × 1017 1 × 1017
    电子俘获截面/cm2 4.13 × 10–14 1 × 10–17 1 × 10–12 1 × 10–12
    空穴俘获截面/cm2 4.13 × 10–11 1 × 10–13 1 × 10–15 1 × 10–15
    厚度/μm 变量 0.05 0.2 0.2 变量 变量
    下载: 导出CSV
  • [1] Matsushita H, Ichikawa T, Katsui A 2005 J. Mater. Sci. 40 2003 doi: 10.1007/s10853-005-1223-5
    [2] Steinhagen C, Panthani M G, Akhavan V, Goodfellow B, Koo B, Korgel B A 2009 J. Am. Chem. Soc. 131 12554 doi: 10.1021/ja905922j
    [3] Todorov T, Gunawan O, Chey S J, De Monsabert T G, Prabhakar A, Mitzi D B 2011 Thin Solid Films 519 7378 doi: 10.1016/j.tsf.2010.12.225
    [4] Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi B 245 1772 doi: 10.1002/pssb.200879539
    [5] Maklavani S E, Mohammadnejad S 2020 Sol. Energy 204 489 doi: 10.1016/j.solener.2020.04.096
    [6] Nadaraja M, Singh O P, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3925 doi: 10.1166/jnn.2020.17529
    [7] Akcay N, Ataser T, Ozen Y, Ozcelik S 2020 Thin Solid Films 704 138028 doi: 10.1016/j.tsf.2020.138028
    [8] Karade V, Lokhande A, Babar P, Gang M G, Suryawanshi M, Patil P, Kim J H 2019 Sol. Energy Mater. Sol. Cells 200 109911 doi: 10.1016/j.solmat.2019.04.033
    [9] Ataca C, Topsakal M, Akturk E, Ciraci S 2011 J. Phys. Chem. C 115 16354 doi: 10.1021/jp205116x
    [10] Song N, Young M, Liu F Y, Erslev P, Wilson S, Harvey S P, Teeter G, Huang Y D, Hao X J, Green M A 2015 Appl. Phys. Lett. 106 252102 doi: 10.1063/1.4922992
    [11] Xu J X, Yang Y Z, Cao Z M, Xie Z W 2016 Optik 127 1567 doi: 10.1016/j.ijleo.2015.11.048
    [12] Shin B H, Zhu Y, Gershon T, Bojarczuk N A, Guha S 2014 Thin Solid Films 556 9 doi: 10.1016/j.tsf.2013.12.046
    [13] Sheng X, Wang L, Tian Y, Luo Y P, Chang L T, Yang D R 2013 J. Mater. Sci.-Mater. Electron. 24 548 doi: 10.1007/s10854-012-0824-4
    [14] 李琳, 文亚南, 董燕, 汪壮兵, 梁齐 2012 真空 49 45 doi: 10.3969/j.issn.1002-0322.2012.01.011

    Li L, Wen Y N, Dong Y, Wang Z B, Liang Q 2012 Vacuum 49 45 doi: 10.3969/j.issn.1002-0322.2012.01.011
    [15] Yeh M Y, Lei P H, Lin S H, Yang C D 2016 Materials 9 526 doi: 10.3390/ma9070526
    [16] Singh S, Katiyar A K, Midya A, Ghorai A, Ray S K 2017 Nanotechnology 28 435704 doi: 10.1088/1361-6528/aa81dd
    [17] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465 doi: 10.1002/aenm.201301465
    [18] Varache R, Leendertz C, Gueunier-farret M E, Haschke J, Munoz D, Korte L 2015 Sol. Energy Mater. Sol. Cells 141 14 doi: 10.1016/j.solmat.2015.05.014
    [19] Amin N, Hossain M I, Chelvanathan P, Uzzaman A M, Sopian K 2010 International Conference on Electrical & Computer Engineering Dhaka, Bangladesh, December 18–20, 2010 p730
    [20] Jiang F, Shen H L, Wang W, Zhang L 2011 Appl. Phys. Express 4 074101 doi: 10.1143/APEX.4.074101
    [21] 许佳雄, 姚若河 2012 物理学报 61 187304 doi: 10.7498/aps.61.187304

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304 doi: 10.7498/aps.61.187304
    [22] Prabeesh P, Selvam I P, Potty S N 2016 Thin Solid Films 606 94 doi: 10.1016/j.tsf.2016.03.037
    [23] Ali K, Khan S A, Jafri M Z M 2014 Sol. Energy 101 1 doi: 10.1016/j.solener.2013.12.021
    [24] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032 doi: 10.1038/nenergy.2017.32
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  241
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 修回日期:  2021-01-07
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回