Preparation, structures and properties of tungsten-containing refractory high entropy alloys
-
摘要: 高熵合金(high-entropy alloys, HEAs)作为一种新型多主元合金, 原子排列有序、化学无序, 具有高熵、晶格畸变、缓慢扩散、“鸡尾酒”等四大效应, 表现出优异的组合性能, 有望作为新型高温结构材料、耐磨性材料、抗辐照材料应用于航空航天、矿山机械、核聚变反应堆等领域. 本文介绍了目前含钨HEAs的发展现状、常用的制备方法、微观结构和相组成. 针对HEAs优异的综合性能, 总结了目前含钨难熔HEAs的力学性能、抗摩擦磨损、抗辐照等性能, 对含钨难熔HEAs后续的研究方向进行了展望.Abstract: As a new type of multi-principal component solid solution alloy, high-entropy alloy has the four major effects, i.e. high entropy, lattice distortion, slow diffusion, and “cocktail” in orderly arrangement of atoms and chemical disorder. It exhibits excellent comprehensive performances and is expected to be used as a new type of high-temperature structural material, wear-resistant material, and radiation-resistant material, which is used in the areas of aerospace, mining machinery, nuclear fusion reactors and others. In this paper, the present research status, conventional preparation methods, microstructures and phase compositions of tungsten high entropy alloys are mainly introduced. In view of the excellent comprehensive properties of high-entropy alloys, the mechanical properties, friction and wear resistance, and radiation resistance of tungsten high-entropy alloys are summarized, and the future research directions of tungsten high-entropy alloys are also prospected.
-
图 9 相应图表的结构以及两种合金在每个滑动距离和所使用的计数器体的磨损率值 (a) 滑动距离400 m; (b) 滑动距离1000 m; (c) 滑动距离2000 m [99]
Figure 9. Comparative diagrams of the volume loss (left) and the wear rate (right) of Mo20Ta20W20Nb20V20 versus Inconel 718, tested with both an alumina and a steel ball for sliding distances of (a) 400 m, (b) 1000 m, and (c) 2000 m, respectively[99].
图 10 在1073 K下1–MeV Kr+2原位辐照HEAs的TEM明场显微图[55]
Figure 10. Bright-field TEM micrographs as a function of dpa of in situ 1–MeV Kr+2-irradiated HEA at 1073 K using a dpa rate of 0.0016 dpa/s: (A) Pre-irradiation; (B) 0.2 dpa; (C) 0.6 dpa; (D) 1.0 dpa; (E) 1.6 dpa; (F) 3.2 dpa; (G) 4.8 dpa; (H) 6.4 dpa; (I) 8 dpa[55].
表 1 近年来一些典型钨HEAs的相组成
Table 1. Phase composition of some typical Tungsten high entropy alloys in recent years.
年份 合金 条件 相 文献 2010 NbMoTaW AC BCC [39] 2010 VNbMoTaW AC BCC [39] 2012 Ti-Nb-Ta-W MS BCC [60] 2015 CrFeNiV0.5W0.25 AC FCC+ $ \sigma $ [61] 2015 CrFeNiV0.5W0.5 AC BCC+FCC+ $ \sigma $ [61] 2015 CrFeNiV0.5W0.75 AC BCC+FCC+ $ \sigma $ [61] 2015 CrFeNiV0.5W AC BCC+FCC+ $ \sigma $ [61] 2015 CrFeNi2V0.5W0.25 AC FCC+ $ \sigma $ [61] 2015 CrFeNi2V0.5W0.5 AC FCC+ $ \sigma $ [61] 2015 CrFeNi2V0.5W0.75 AC BCC+FCC+ $ \sigma $ [61] 2015 CrFeNi2V0.5W AC BCC+FCC+ $ \sigma $ [61] 2015 Cr0.5VNbMoTaW AC BCC [62] 2015 CrVNbMoTaW AC BCC [62] 2015 Cr2VNbMoTaW AC BCC [62] 2016 VZrMoTaW AC(+A) BCC+ BCC+HCP+Laves [63] 2016 VNbTaW AC BCC [64] 2016 TiVNbTaW AC BCC [64] 2017 TiNbMoTaW AC BCC [65] 2017 TiVNbMoTaW AC BCC [65] 2017 TixNbMoTaW (x = 0–1) AC BCC [66] 2017 TiVCrTaWx MA+SPS BCC [67] 2018 VCrMoTaW MA BCC [68] 2018 V11Cr15Ta36W38 MS BCC [55] 2018 AlTiCrFeNbMoW LC BCC+IM [58] 2018 Ti8Nb23Mo23Ta23W23 MA+SPS BCC+Carbide [51] 2018 VCrFeTaxWx(x = 0.1, 0.2) AC BCC [69] 2018 VCrFeTaxWx(x = 0.3) AC BCC1+BCC2 [69] 2018 VCrFeTaxWx (x = 0.4, 1) AC BCC1+BCC2+Laves [69] 2018 VNbMoTaW MA+HPHT BCC [50] 2019 VCuMoTaW MA BCC [49,53] 2019 V26.4Cr31.3Mo23.6W18.7 AC BCC [70] 2019 TiNiNbTaW AC BCC+ $ \mu $ [71] 2019 Al10Ti18Ni18Nb18Ta18W18 AC BCC+ $ \mu $+L21 [71] 2019 VCrNbMoTaW MA+SPS BCC+Laves [48] 2019 Ti34.4Nb32.9Mo17W15.7 AC BCC [72] 2019 Mo-Ru-RhW-Ir AC BCC+HCP+FCC [73,74] 2019 AlTiCrFe1.5NbxMoW (x = 1.5–3) LC BCC+MC+Laves [75] 2019 TiCrNbMoW MA+SPS BCC+Laves [47] 2020 FeNiMoW AC FCC+BCC+ $ \mu $ [76] 2020 V2.5Cr1.2Co0.04MoW AC BCC [77] 2020 NbMoReTaWTa AC+A BCC [44] 2020 (TiNbMoW)100–xCrx (x = 5–20) MA+SPS BCC+Laves [43] 2020 (VNbMoTaW)99B1 MA+HPHT BCC [78] AC = 铸造, MS = 磁控溅射, A = 热处理, MA = 球磨, SPS = 放电等离子烧结, LC = 激光熔覆, HPHT = 高压/高压固结技术 -
[1] Knaster J, Moeslang A, Muroga T 2016 Nat. Phys. 12 424 doi: 10.1038/nphys3735 [2] Phillips N W, Yu H, Das S, Yang D, Mizohata K, Liu W, Xu R, Harder R J, Hofmann F 2020 Acta Mater. 195 219 doi: 10.1016/j.actamat.2020.05.033 [3] Gilbert M R, Dudarev S L, Zheng S, Packer L W, Sublet J C 2012 Nucl. Fusion 52 083019 [4] 马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波 2019 物理学报 68 040702 doi: 10.7498/aps.68.20181864Ma Y T, Liu J B, Han L, Tian L F, Wang X C, Meng X M, Xiao S Q, Wang B 2019 Acta Phys. Sin. 68 040702 doi: 10.7498/aps.68.20181864 [5] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯 2016 物理学报 65 077803 doi: 10.7498/aps.65.077803Guo H Y, Xia M, Yan Q Z, Guo L P, Chen J H, Ge C C 2016 Acta Phys. Sin. 65 077803 doi: 10.7498/aps.65.077803 [6] Tan X, Luo L, Chen H, Zhu X, Wu Y 2015 Sci. Rep-UK 5 12755 doi: 10.1038/srep12755 [7] Beiersdorfer P, Clementson J, Safronova U 2015 Int. J. Radiat. Oncol. 3 587 [8] Rieth M, Dudarev S L, Gonzalez de Vicente S M, Aktaa J, Ahlgren T, Antusch S, Armstrong D E J, Balden M, Baluc N, Barthe M F, Basuki W W, Battabyal M, Becquart C S, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia J B, de Backer A, Domain C, Gaganidze E, García-Rosales C, Gibson J, Gilbert M R, Giusepponi S, Gludovatz B, Greuner H, Heinola K, Höschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, López-Ruiz P, Maier H, Matejicek J, Mishra T P, Muhammed M, Muñoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordás N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts S G, Romaner L, Rosiński M, Sanchez M, Schulmeyer W, Traxler H, Ureña A, van der Laan J G, Veleva L, Wahlberg S, Walter M, Weber T, Weitkamp T, Wurster S, Yar M A, You J H, Zivelonghi A 2013 Journal of Nuclear Materials 432 482 doi: 10.1016/j.jnucmat.2012.08.018 [9] Neu R, Hopf C, Kallenbach A, Pütterich T, Dux R, Greuner H, Gruber O, Herrmann A, Krieger K, Materials H M J J O N 2007 J. Nucl. Mater. 367/358/369/370 1497 [10] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松 2018 金属学报 54 831 doi: 10.11900/0412.1961.2018.00071Zhang T, Yan W, Xie Z M, Miao S, Yang J F, Wang X P, Fang Q F, Liu C S 2018 Acta Metall. Sin. 54 831 doi: 10.11900/0412.1961.2018.00071 [11] Zhe C, Niu L L, Wang Z, Tian L, Wei Q 2018 Acta Mater. 147 100 doi: 10.1016/j.actamat.2018.01.015 [12] Lang E, Madden N, Smith C, Krogstad J, Allain J P 2018 Int. J. Refract. Met. & H. 75 279 [13] Zhang Z X, Chen D S, Han W T, Kimura A 2015 Fusion Engineering & Design 98/99 2103 [14] Hu X, Koyanagi T, Fukuda M, Kumar N A P K, Snead L L, Wirth B D, Katoh Y 2016 Journal of Nuclear Materials 480 235 doi: 10.1016/j.jnucmat.2016.08.024 [15] Chen Z, Niu L L, Wang Z, Tian L, Kecskes L, Zhu K, Wei Q 2018 Acta Materialia 147 100 https://www.sciencedirect.com/science/article/pii/S1359645418300466?via%3Dihub [16] Merola M, Escourbiac F, Raffray R, Chappuis P, Hirai T, Martin A 2014 Fusion Eng. Des. 89 890 doi: 10.1016/j.fusengdes.2014.01.055 [17] García-Rosales C, López-Ruiz P, Alvarez-Martín S, Calvo A, Ordás N, Koch F, Brinkmann J 2014 Fusion Eng. Des. 89 1611 doi: 10.1016/j.fusengdes.2014.04.057 [18] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng Mater. 6 299 doi: 10.1002/adem.200300567 [19] Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375/376/377 213 [20] Miracle D B, Senkov O N 2017 Acta Mater. 122 448 doi: 10.1016/j.actamat.2016.08.081 [21] Senkov O N, Miracle D B, Chaput K J, Couzinie J P 2018 J. Mater. Res. 33 3092 doi: 10.1557/jmr.2018.153 [22] 王雪姣, 乔珺威, 吴玉程 2020 材料导报 17 1Wang X J, Qiao J W, Wu Y C 2020 Mater. Rep. 17 1 [23] Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349 doi: 10.1016/j.mattod.2015.11.026 [24] He J Y, Liu W H, Wang H, Wu Y, Liu X J, Nieh T G, Lu Z P 2014 Acta Mater. 62 105 doi: 10.1016/j.actamat.2013.09.037 [25] Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534 [26] Guo S, Liu C T 2011 Prog. Nat. Sci-Mater. 21 433 doi: 10.1016/S1002-0071(12)60080-X [27] Guo S, Ng C, Lu J, Liu C T 2011 J. AppL. Phys. 109 103505 [28] Yang X, Zhang Y 2012 Mater. Chem. Phys. 132 233 doi: 10.1016/j.matchemphys.2011.11.021 [29] Ren MX, Li B- S, Fu H Z 2013 T. Nonferr. Metal. Soc. 23 991 doi: 10.1016/S1003-6326(13)62557-1 [30] Zhang Y, Lu Z P, Ma S G, Liaw P K, Tang Z, Cheng Y Q, Gao M C 2014 MRS Commun. 4 57 doi: 10.1557/mrc.2014.11 [31] Gao M C, Carney C S, Doğan Ö N, Jablonksi P D, Hawk J A, Alman D E 2015 JOM 67 2653 doi: 10.1007/s11837-015-1617-z [32] Wang Z, Huang Y, Yang Y, Wang J, Liu C T 2015 Scripta Mater. 94 28 doi: 10.1016/j.scriptamat.2014.09.010 [33] King D J M, Middleburgh S C, McGregor A G, Cortie M B 2016 Acta Mater. 104 172 doi: 10.1016/j.actamat.2015.11.040 [34] Varma S K, Sanchez F, Ramana C V 2020 J. Mater. Sci. Technol. 53 66 doi: 10.1016/j.jmst.2020.03.028 [35] Varma S K, Sanchez F, Moncayo S, Ramana C V 2020 J. Mater. Sci. Technol. 38 189 doi: 10.1016/j.jmst.2019.09.005 [36] 刘张全, 乔珺威 2019 中国材料进展 38 768Liu Z Q, Qiao J W 2019 Mater. Chin. 38 768 [37] Senkov O N, Jensen J K, Pilchak A L, Miracle D B, Fraser H L 2018 Mater. Design 139 498 doi: 10.1016/j.matdes.2017.11.033 [38] Guo N N, Wang L, Luo L S, Li X Z, Chen R R, Su Y Q, Guo J J, Fu H Z 2016 Mater. Sci. Eng. A 651 698 doi: 10.1016/j.msea.2015.10.113 [39] Senkov O N, Wilks G B, Miracle D B, Chuang C P, Liaw P K 2010 Intermetallics 18 1758 doi: 10.1016/j.intermet.2010.05.014 [40] Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698 doi: 10.1016/j.intermet.2011.01.004 [41] Maresca F, Curtin W A 2020 Acta Mater. 182 235 doi: 10.1016/j.actamat.2019.10.015 [42] Wei S, Kim S J, Kang J, Zhang Y, Zhang Y, Furuhara T, Park E S, Tasan C C 2020 Nat. Mater. 19 [43] Yan J, Li M, Li K, Qiu J, Guo Y 2020 J. Mater. Eng. Perform. 29 2125 doi: 10.1007/s11665-020-04744-7 [44] Yan D, Song K, Sun H, Wu S, Zhao K, Zhang H, Yuan S, Kim J T, Chawake N, Renk O, Hohenwarter A, Wang L, Eckert J 2020 J. Mater. Eng. Perform. 29 399 doi: 10.1007/s11665-019-04540-y [45] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153 doi: 10.1126/science.1254581 [46] Zou Y, Maiti S, Steurer W, Spolenak R 2014 Acta Mater. 65 85 doi: 10.1016/j.actamat.2013.11.049 [47] Yan J, Li K, Wang Y, Qiu J 2019 JOM 71 2489 doi: 10.1007/s11837-019-03432-9 [48] Long Y, Liang X, Su K, Peng H, Li X 2019 J. Alloy. Compd. 780 607 doi: 10.1016/j.jallcom.2018.11.318 [49] Alvi S, Akhtar F 2019 Wear 426 412 [50] Xin S W, Zhang M, Yang T T, Zhao Y Y, Sun B R, Shen T D 2018 J. Alloy. Compd. 769 597 doi: 10.1016/j.jallcom.2018.07.331 [51] Pan J, Dai T, Lu T, Ni X, Dai J, Li M 2018 Mater. Sci. Eng. A 738 362 doi: 10.1016/j.msea.2018.09.089 [52] Xia A, Togni A, Hirn S, Bolelli G, Lusvarghi L, Franz R 2020 Surf. Coat. Tech. 385 125356 doi: 10.1016/j.surfcoat.2020.125356 [53] Alvi S, Jarzabek D M, Kohan M G, Hedman D, Jenczyk P, Natile M M, Vomiero A, Akhtar F 2020 ACS Appl. Mater. Inter. 12 21070 [54] Kim H, Nam S, Roh A, Son M, Ham M H, Kim J H, Choi H 2019 Int. J. Refract. Met. H. 80 286 doi: 10.1016/j.ijrmhm.2019.02.005 [55] El-Atwani O, Li N, Li M, Devaraj A, Baldwin J K S, Schneider M M, Sobieraj D, Wróbel J S, Nguyen-Manh D, Maloy S A 2018 Sci. Adv. 5 [56] Zou Y, Ma H, Spolenak R 2015 Nat. Commun. 6 7748 doi: 10.1038/ncomms8748 [57] Guo Y, Wang H, Liu Q 2020 J. Alloy. Compd. 834 155147 [58] Guo Y, Liu Q 2018 Intermetallics 102 78 doi: 10.1016/j.intermet.2018.09.005 [59] Moorehead M, Bertsch K, Niezgoda M, Parkin C, Elbakhshwan M, Sridharan K, Zhang C, Thoma D, Couet A 2020 Mater. Design 187 108358 [60] Feng X, Tang G, Gu L, Ma X, Sun M, Wang L 2012 Appl. Surf. Sci. 261 447 [61] Jiang H, Jiang L, Han K, Lu Y, Wang T, Cao Z, Li T 2015 J. Mater. Eng. Perform. 24 4594 [62] Zhang B, Gao M C, Zhang Y, Guo S M 2015 CALPHAD 51 193 [63] Anzorena M S, Bertolo A A, Gagetti L, Kreiner A J, Mosca H O, Bozzolo G, del Grosso M F 2016 Mater. Design 111 382 [64] Yao H W, Qiao J W, Gao M C, Hawk J A, Ma S G, Zhou H F, Zhang Y 2016 Mat. Sci. Eng. A-STRUCT 674 203 doi: 10.1016/j.msea.2016.07.102 [65] Han Z D, Chen N, Zhao S F, Fan L W, Yang G N, Shao Y, Yao K F 2017 Intermetallics 84 153 doi: 10.1016/j.intermet.2017.01.007 [66] Han Z D, Luan H, Liu X, Chen N, Li X Y, Shao Y, Yao K 2017 Mater. Sci. Eng. A 712 [67] Waseem O A, Ryu H J 2017 Sci. Rep-UK 7 1926 doi: 10.1038/s41598-017-02168-3 [68] Das S, Robi P S, Iop 2018 International Conference on Recent Advances in Materials & Manufacturing Technologies [69] Zhang W, Liaw P, Zhang Y 2018 Entropy 20 [70] Ikeuchi D, King D J M, Laws K J, Knowles A J, Aughterson R D, Lumpkin G R, Obbard E G 2019 Scripta Mater. 158 141 doi: 10.1016/j.scriptamat.2018.08.045 [71] Ley N A, Segovia S, Gorsse S, Young M L 2019 Metall. Mater. Trans. A 50A 4867 [72] Senkov O N, Rao S I, Butler T M, Chaput K J 2019 J. Alloy. Compd. 808 151685 doi: 10.1016/j.jallcom.2019.151685 [73] Takeuchi A, Wada T, Kato H 2019 Mater. Trans. 60 2267 doi: 10.2320/matertrans.MT-M2019212 [74] Takeuchi A, Wada T, Kato H 2019 Mater. Trans. 60 1666 doi: 10.2320/matertrans.M2019037 [75] Wang H, Liu Q, Guo Y, Lan H 2019 Intermetallics 115 106613 doi: 10.1016/j.intermet.2019.106613 [76] Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020 Acta Mater. 186 257 doi: 10.1016/j.actamat.2020.01.005 [77] Patel D, Richardson M D, Jim B, Akhmadaliev S, Goodall R, Gandy A S 2020 J. Nucl. Mater. 531 152005 doi: 10.1016/j.jnucmat.2020.152005 [78] Xin S W, Shen X, Du C C, Zhao J, Sun B R, Xue H X, Yang T T, Cai X C, Shen T D 2021 J. Nucl. Mater. 853 155995 [79] Hung S B, Wang C J, Chen Y Y, Lee J W, Li C L 2019 Surf. Coat. Tech. 375 802 doi: 10.1016/j.surfcoat.2019.07.079 [80] Malinovskis P, Fritze S, Riekehr L, von Fieandt L, Cedervall J, Rehnlund D, Nyholm L, Lewin E, Jansson U 2018 Mater. Design 149 51 doi: 10.1016/j.matdes.2018.03.068 [81] Lee C, Song G, Gao M C, Feng R, Chen P, Brechtl J, Chen Y, An K, Guo W, Poplawsky J D, Li S, Samaei A T, Chen W, Hu A, Choo H, Liaw P K 2018 Acta Mater. 160 158 doi: 10.1016/j.actamat.2018.08.053 [82] Hemphill M A, Yuan T, Wang G Y, Yeh J W, Tsai C W, Chuang A, Liaw P K 2012 Acta Mater. 60 5723 doi: 10.1016/j.actamat.2012.06.046 [83] Singh S, Wanderka N, Murty B S, Glatzel U, Banhart J 2011 Acta Mater. 59 182 doi: 10.1016/j.actamat.2010.09.023 [84] Li Z, Pradeep K G, Deng Y, Raabe D, Tasan C C 2016 Nature 534 227 [85] Shao L, Zhang T, Li L, Zhao Y, Huang J, Liaw P K, Zhang Y 2018 J. Mater. Eng. Perform. 27 6648 doi: 10.1007/s11665-018-3720-0 [86] 胡赓祥, 蔡珣, 戎咏华 2003 材料科学基础 (上海: 上海交通大学出版社)Hu G X, Cai X, Rong Y H 2003 Fundamentals of Materials Science (Beijing: Shanghai Jiao Tong University Press) (in Chinese) [87] 张联盟, 黄学辉, 宋晓岚 2008 材料科学基础 (武汉: 武汉理工大学出版社)Zhang L M, Huang X H, Song X L 2008 Fundamentals of Materials Science (Wuhan: Wuhan Li Gong University Press) (in Chinese) [88] Callister W D, Rethwisch D G 2014 Materials Science and Engineering (United States of America: Wiley) [89] Gao M C, Yeh J W, Liaw P K, Zhang Y 2016 High Entropy Alloys Fundamentals and Applications (New York: Springer Press) [90] Zhou R, Chen G, Liu B, Wang J, Han L, Liu Y 2018 Int. J. Refract. Met. H. 75 56 doi: 10.1016/j.ijrmhm.2018.03.019 [91] Ye Y X, Liu C Z, Wang H, Nieh T G 2018 Acta Mater. 147 78 doi: 10.1016/j.actamat.2018.01.014 [92] Poulia A, Georgatis E, Lekatou A, Karantzalis A E 2016 Int. J. Refract. Met. H. 57 50 doi: 10.1016/j.ijrmhm.2016.02.006 [93] Hsu C Y, Sheu T S, Yeh J W, Chen S K 2010 Wear 268 653 doi: 10.1016/j.wear.2009.10.013 [94] Wang Y, Yang Y, Yang H, Zhang M, Qiao J 2017 J. Alloy. Compd. 725 365 doi: 10.1016/j.jallcom.2017.07.132 [95] Liu Y, Ma S, Gao M C, Zhang C, Zhang T, Yang H, Wang Z, Qiao J 2016 Metall. Mater Trans. A 47 3312 doi: 10.1007/s11661-016-3396-8 [96] Yadav S, Kumar A, Biswas K 2018 Mater. Chem. Phys. 210 222 doi: 10.1016/j.matchemphys.2017.06.020 [97] Zhang A, Han J, Su B, Meng J 2017 J. Alloy. Compd. 725 700 doi: 10.1016/j.jallcom.2017.07.197 [98] Gorban’ V F, Krapivka N A, Karpets M V, Kostenko A D, Samelyuk A N, Kantsyr E V 2017 J. Frict. Wear 38 292 doi: 10.3103/S1068366617040043 [99] Poulia A, Georgatis E, Lekatou A, Karantzalis A 2017 Adv. Eng. Mater. 1 9 [100] Shu W M, Luo G N, Yamanishi T 2007 J. Nucl. Mater. 367/368/369/370 1463 [101] Nishijima D, Ye M Y, Ohno N, Takamura S 2003 J. Nucl. Mater. 313/314/315/316 97 [102] Nagata S, Tsuchiya B, Sugawara T, Ohtsu N, Shikama T 2002 J. Nucl. Mater. 307/308/309/310/311 1513 [103] Nishijima D, Ye M Y, Ohno N, Takamura S 2004 J. Nucl. Mater. 329/330/331/332/333 1029 [104] Takamura S, Ohno N, Nishijima D, Kajita S 2006 Plasma Fusion Res. 1 051 doi: 10.1585/pfr.1.051 [105] Granberg F, Nordlund K, Ullah M W, Jin K, Lu C, Bei H, Wang L M, Djurabekova F, Weber W J, Zhang Y 2016 Phys. Rev. Lett. 116 135504 doi: 10.1103/PhysRevLett.116.135504 [106] El-Atwani O, Hinks J A, Greaves G, Allain J P, Maloy S A 2017 Mater. Res. Lett. 5 343 doi: 10.1080/21663831.2017.1292326 [107] El-Atwani O, Esquivel E, Efe M, Aydogan E, Wang Y Q, Martinez E, Maloy S A 2018 Acta Mater. 149 206 doi: 10.1016/j.actamat.2018.02.035 [108] Vetterick G A, Gruber J, Suri P K, Baldwin J K, Kirk M A, Baldo P, Wang Y Q, Misra A, Tucker G J, Taheri M L 2017 Sci. Rep-UK 7 12275 doi: 10.1038/s41598-017-12407-2 [109] Yi X, Jenkins M L, Kirk M A, Zhou Z, Roberts S G 2016 Acta Mater. 112 105 doi: 10.1016/j.actamat.2016.03.051 [110] Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D, Kurtz R J 2015 J. Nucl. Mater. 462 329 doi: 10.1016/j.jnucmat.2014.12.056 [111] Cai W, Li Y, Dowding R, Mohamed F, Lavernia E 1995 Rev. Particul. Mater. 3 71 [112] Wiley J 1994 Dynamic Behavior of Materials ppi-xviii [113] Arfsten D P, Still K R, Ritchie G D 2001 Toxicol Ind Health 17 180 doi: 10.1191/0748233701th111oa [114] Magness L S 1994 Mechan. Mater. 17 147 doi: 10.1016/0167-6636(94)90055-8 [115] Kim D K, Lee S, Hyung Baek W 1998 Mater. Sci. Eng. A 249 197 doi: 10.1016/S0921-5093(98)00565-6 [116] 陈海华, 张先锋, 熊玮, 刘闯, 魏海洋, 汪海英, 戴兰宏 2020 力学学报 52 1443 doi: 10.6052/0459-1879-20-166Chen H H, ZHang X F, Xiong W, Liu C, Wei H Y, Wang H Y, Dai L H 2020 Chin. J. Theor. Appl. Mec. 52 1443 doi: 10.6052/0459-1879-20-166 [117] Tang Z, Huang L, He W, Liaw P 2014 Entropy 16 895 doi: 10.3390/e16020895 [118] Jayaraj J, Thinaharan C, Ningshen S, Mallika C, Kamachi Mudali U 2017 Intermetallics 89 123 doi: 10.1016/j.intermet.2017.06.002 [119] Wang S, Xu J 2016 Mater. Sci. Eng. C 73