留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超电容储能电极材料的密度泛函理论研究

徐强 司雪 佘维汉 杨光敏

徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究[J]. 机械工程学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
引用本文: 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究[J]. 机械工程学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
Xu Qiang, Si Xue, She Wei-Han, Yang Guang-Min. Density functional theory study of supercapacitor for energy storage electrode materials[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
Citation: Xu Qiang, Si Xue, She Wei-Han, Yang Guang-Min. Density functional theory study of supercapacitor for energy storage electrode materials[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988

超电容储能电极材料的密度泛函理论研究

doi: 10.7498/aps.70.20201988
详细信息
    通讯作者:

    E-mail: 249138087@qq.com

  • 中图分类号: 73.20.At, 81.05.ue

Density functional theory study of supercapacitor for energy storage electrode materials

More Information
  • 摘要: 由于量子限域效应和态密度的限制, 石墨烯、硅烯等二维材料的量子电容在费米能级附近趋近于零. 基于密度泛函理论的第一性原理研究发现, 掺杂和吸附使石墨烯等二维电极材料的电子结构得以有效的调制, 它促进狄拉克点附近局域电子态的形成和/或费米能级的移动, 从而使量子电容得到了提高. 比较Ti (Au, Ag, Cu, Al)和3-B (N, P, S)掺杂单空位石墨烯(硅烯, 锗烯)的量子电容, 发现3-N掺杂单空位石墨烯和Ti原子吸附单空位硅烯、锗烯的量子电容明显得到了提升, 量子电容分别为118.42 μF/cm2, 79.84 μF/cm2和76.54 μF/cm2. 另外还研究了3-N掺杂三种烯类的浓度效应, 随掺杂浓度的增加, 量子电容呈增加趋势. 通过研究各掺杂体系的热力学稳定性问题, 发现Ti是最稳定的吸附原子, 因为Ti和C原子之间可以形成强键. 在B, N, P, S掺杂单空位硅烯和锗烯中, S是最稳定的掺杂原子, 而对于石墨烯, N掺杂的形成能最低, 量子电容最高. 上述二维电极材料的理论模拟计算为超级电容器和场效应晶体管中的实际应用做出了探索性的工作.

     

  • 图  (a), (b) 金属原子分别在本征和单空位锗烯(硅烯, 石墨烯)上的最稳定吸附位置的吸附能, 掺杂浓度为3.1%; (c) 单空位锗烯(硅烯, 石墨烯)掺杂3-B (N, P, S)原子的形成能, 掺杂浓度9.3%

    Figure  1.  (a), (b) The adsorption energies of adsorbing metal atoms in the strongest position on pristine and single-vacancy germanene (silicene, graphene) with thedoping concentration of 3.1%; (c) the formation energy of single-vacancy germanene (silicene, graphene) doped with triple-B (N, P, S) with the doping concentration of 9.3%.

    图  (a), (b)分别为本征石墨烯、硅烯、锗烯的质量比量子电容, 面积比量子电容(锗烯: 1 μF/cm2 = 11.48 F/g, 硅烯: 1 μF/cm2 = 27.37 F/g, 石墨烯: 1 μF/cm2 = 26.3 F/g)

    Figure  2.  (a), (b) calculated specific quantum capacitance (CQ), areal CQ vs. potential drop of pristine graphene, siliceneand germanene. (For germanene 1 μF/cm2 = 11.48 F/g, silicene 1 μF/cm2 = 27.37 F/g, and graphene 1 μF/cm2 = 26.3 F/g).

    图  (a)−(c) 单空位石墨烯(硅烯, 锗烯)吸附Ti (Cu, Au, Ag, Al)和(d)−(f) 3-B (P, N, S)掺杂单空位石墨烯(硅烯, 锗烯)量子电容最大值的变化趋势图

    Figure  3.  (a)−(c) Change trend chart of the maximum value ofCQ for Ti (Cu, Au, Ag and Al) adsorbed single-vacancy grapheme (silicene, germanene), and (d)−(f) 3-B (P, N, S)-doped single-vacancy grapheme (silicene, germanene).

    图  (a) 单空位石墨烯(硅烯, 锗烯)吸附Ti, Au, Ag, Cu, Al体系中, 最高的量子电容与电势的关系图, 掺杂浓度为3.1%; (b) 单空位石墨烯(硅烯, 锗烯)掺杂三个B, N, P, S原子体系中, 最高的量子电容-电势关系图, 掺杂浓度为9.3%

    Figure  4.  (a) Under the condition of doping concentration of 3.1%, the calculated quantum capacitance of single-vacancy grapheme (silicene, germanene) adsorbed withTi, Au, Ag, Cu, Al with the best properties, as a function of local electrode potential (Φ); (b) CQ of single-vacancy germanene (silicene, graphene) doping with triple-B (N, P, S)with the best properties, under the condition of doping concentration of 9.3%.

    图  (a) Ti掺杂单空位硅烯浓度的态密度(DOS)和局域态密度(LDOS)图, 掺杂浓度为3.1%; (b) 3-N原子掺杂单空位石墨烯的态密度(DOS)和局域态密度(LDOS)图, 掺杂浓度为9.4%

    Figure  5.  Density of states (DOS) and local density of states (LDOS) of adsorbed Ti atoms on single-vacancy silicene with Ti concentration3.1%, and (b) triple N-doping single-vacancy grapheme with N concentration 9.4%.

    图  (a)−(f)不同掺杂浓度的单空位石墨烯(硅烯, 锗烯)掺杂三个N原子的量子电容以及表面电荷密度-电势的关系图

    Figure  6.  (a)−(f)Calculated quantum capacitance and surface charge vs. potential drop of 3 N-doping single-vacancy grapheme (silicene, germanene) with different concentration, as a function of local electrode potential (Φ).

    图  本征石墨烯和石墨烯掺杂3-N原子的总界面电容, 双电层电容以及量子电容. 双电层电容是根据经典分子动力学模拟获得, 模拟条件为1 M NaCl水性电解液[20]

    Figure  7.  The capacitance of triple-N doped with graphene and pristine grapheme, including quantum capacitance (CQ), electric double-layer capacitance (CD) and total interfacial capacitance(CT).The CD is obtained by classical MD simulation under the condition of 1 M NaCl aqueous electrolyte[20].

    表  1  在本征和单空位石墨烯、硅烯、锗烯上分别以不同位置吸附Al, Ag, Cu, Ti和Au金属原子的吸附能

    Table  1.   The adsorption energy of Al, Ag, Cu, Ti, Au adsorbed on pristine and single-vacancy graphene (silicene, germanene) with different configurations.

    System
    ΔEad(eV)
    Hill Valley Bridge Hollow H*
    Graphene Al –0.888 –0.902 –1.012 –5.399
    Ag 0.035 –0.001 0.011 –1.695
    Cu –0.220 –0.217 –0.057 –3.599
    Ti –1.075 –0.827 –1.544 –8.159
    Au –0.096 –0.082 –0.073 –2.359
    Silicene Al –2.794 –2.907 –2.573 –5.502
    Ag –0.991 –1.313 –1.244 –1.616 –3.182
    Cu –1.549 –2.368 –2.764 –4.538
    Ti –3.694 –3.907 –3.893 –6.348
    Au –1.843 –1.933 –2.238 –4.486
    Germanene Al –1.815 –2.716 –2.520 –4.908
    Ag –0.984 –1.322 –1.650 –2.869
    Cu –1.377 –2.091 –2.489 –3.812
    Ti –3.569 –3.968 –4.144 –5.565
    Au –1.636 –1.700 –1.818 –2.113 –4.020
    下载: 导出CSV

    表  2  在单空位石墨烯、硅烯、锗烯上掺杂3-B(N, P, S)原子的形成能

    Table  2.   The formation energy of triple-B (N, P, S) doped single-vacancy graphene (silicene, germanene).

    System ΔEf(eV) B N P S
    Graphene 4.663 3.735 7.773 3.708
    Silicene 7.825 0.503 –0.590 –6.759
    Germanene 8.684 5.256 0.575 –6.149
    下载: 导出CSV
  • [1] Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J 2011 Chem. Rev. 111 3577 doi: 10.1021/cr100290v
    [2] Simon P, Gogotsi Y 2008 Nat. Mater. 7 845 doi: 10.1038/nmat2297
    [3] Premathilake D, Outlaw R A, Parler S G, Butler S M, Miller J R 2017 Carbon 111 231 doi: 10.1016/j.carbon.2016.09.080
    [4] Paek E, Pak A J, Kweon K E, Hwang G S 2013 J. Phys. Chem. C 11 75610
    [5] Zhang L L, Zhao X, Ji H, Stoller M D, Lai L, Murali S, Mcdonnell S, Cleveger B, Wallace R M, Ruoff R S 2012 Energy Environ. Sci. 5 9618 doi: 10.1039/c2ee23442d
    [6] Stoller M D, Magnuson C W, Zhu Y W, Murali S, Suk J W, Piner R, Ruoff R S 2011 Energy Environ. Sci. 4 4685 doi: 10.1039/c1ee02322e
    [7] Jeong H M, Lee J W S, Hin W H, Choi Y J, Shin H J, Kang J K, Choi J W 2011 Nano Lett. 11 2472 doi: 10.1021/nl2009058
    [8] Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178 doi: 10.1016/j.pmatsci.2011.03.003
    [9] You B, Wang L, Yao L, Yang J 2013 Chem. Commun. 49 5016 doi: 10.1039/c3cc41949e
    [10] Pak A J, Paek E, Hwang G S 2013 Phys. Chem. Chem. Phys. 15 19741 doi: 10.1039/C3CP52590B
    [11] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501 doi: 10.1103/PhysRevLett.108.245501
    [12] Chiappe D, Scalise E, Cinquanta E, Grazianetti C, Van den Broek B, Fanciulli, Houssa M, Molle A 2014 Adv. Mater. 26 2096 doi: 10.1002/adma.201304783
    [13] Yang G M, Zhang H Z, Fan X F, Zheng W T 2015 J. Phys. Chem. C 119 6464 doi: 10.1021/jp512176r
    [14] Yang G M, Xu Q, Fan X F, Zheng W T 2018 J. Phys. Chem. C 122 1903 doi: 10.1021/acs.jpcc.7b08955
    [15] Kresse G, Furthmüller J 1996 J. Comput. Mater. Sci. 6 15 doi: 10.1016/0927-0256(96)00008-0
    [16] Blöchl P E 1994 Phys. Rev. B 50 17953 doi: 10.1103/PhysRevB.50.17953
    [17] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 4 66671
    [18] Sivek J, Sahin H, Partoens B, Peeters F M 2013 Phys. Rev. B 87 085444 doi: 10.1103/PhysRevB.87.085444
    [19] De Padova P, Vogt P, Resta A, Avila J, Razado-Colambo I, Quaresima C, Ottaviani C, Bruhn T, Hirahara T, Shirai T, Hasegawa S, Asensio M C, Le Lay G 2013 Appl. Phys. Lett. 102 163106 doi: 10.1063/1.4802782
    [20] Zhan C, Zhang Y, Cummings P T, Jiang D R 2016 Phys. Chem. Chem. Phys. 18 4668 doi: 10.1039/C5CP06952A
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  671
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-25
  • 修回日期:  2021-02-24
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回