Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array
-
摘要: 光声和热声成像技术除激发源不同外, 可共用一套数据采集和处理系统, 具有天然的融合优势. 本文提出了一种基于镂空阵列的反射式光声/热声双模态成像技术, 该技术利用光纤与天线, 通过镂空阵列的开孔进行光声/热声信号激发, 使得激发光、微波和接收超声信号共轴, 构成明场光声/热声双模态成像模式. 通过对探头镂空部分晶元相位和幅值的补偿校准, 成功实现了3 mm直径塑料管、人体手臂、手背和脚背的双模态成像. 实验结果表明: 系统空间分辨率为0.33 mm, 双模态成像技术可同时提供组织的光学和微波吸收分布, 有助于肿瘤、糖尿病足等疾病的精准检测, 具有极广泛的临床应用前景.Abstract: Photoacoustic (PA) and thermoacoustic (TA) imaging can share a set of data acquisition and data processing system, in addition to different excitation sources. In this paper, a reflection mode PA/TA dual modality imaging based on a hollow concave array is proposed. The PA/TA signals are excited through the holes in the hollow array by using optical fiber and dipole antenna, respectively. The excited light, microwave and received ultrasonic signals are coaxial, forming a PA/TA dual modality imaging mode. Through the compensation and calibration of the transducer crystal phase and amplitude of the hollow part of the array, a 3-mm-diameter plastic tube filled with 0.9 wt.% salt water, safflower oil, human arm, back of hand and instep are successfully imaged, separately. These experimental results show that the spatial resolution of the PA/TA dual modality imaging system is 0.33 mm, and this technology has a potential to provide the optical and microwave absorption distribution of tissues at the same time by using the same hollow concave array, which is helpful in accurately detecting tumor, diabetic foot and other diseases, and has a wide range of clinical application prospects.
-
Key words:
- photoacoustic/thermoacoustic /
- dual modality imaging /
- hollow array /
- hand-held
-
图 1 (a)为反射式光声/热声双模态成像系统框图; (b), (c)分别为反射式光声和热声成像探头接口实物图; (d), (e)分别为镂空探头俯视和侧视实物图
Figure 1. (a) Schematic of the photoacoustic (PA)/thermoacoustic (TA) dual modality imaging system; (b), (c) photograph of the PA and TA imaging system, respectively; (d), (e) Top view and side view of the hollow concave array, respectively.
图 2 镂空阵列探头校准结果图 (a) 第47和48晶元接收到的热声信号波形; (b) 第49晶元所接收热声信号校准前和校准后的波形图, 以及与第48晶元热声信号波形图; (c), (d) 分别为校准前和校准后的热声图像
Figure 2. The calibration results of hollow transducer array: (a) TA signal received by the 47 th and 48 th elements; (b) the TA signal before and after calibration of the 49 th element, and the TA signal of the 48 th element; (c), (d) are the TA images before and after calibration, respectively. TAM: Thermoacoustic Amplitude.
图 5 正常人手臂双模态成像, 左侧为待成像平面示意图, A和B分别为自愿者1和2待成像手臂平面示意图; (a)−(d)和(e)−(h)依次为为自愿者1和2手臂的热声图像, 680, 720, 800 nm激发光声图像
Figure 5. The picture is the schematic of the opisthenar to be imaged, A and B are the detection plan of volunteers 1 and 2, respectively. (a)−(d) and (e)−(f) are TA image, 680 nm PA image, 720 nm PA image and 800 nm PA image of volunteers 1 and 2, respectively. TAM: Thermoacoustic Amplitude, PAM: Photoacoustic Amplitude.
图 6 正常人手背双模态成像 (a) 待成像平面示意图; (b) 对应层面MRI图; (c)−(f) 依次为手背的热声图像, 680, 720和800 nm激发光声图像
Figure 6. (a) Schematic diagram of the plane to be imaged; (b) the corresponding MRI image; (c)−(f) are TA image, 680 nm PA image, 720 nm PA image and 800 nm image of hand, respectively. TAM: Thermoacoustic Amplitude, PAM: Photoacoustic Amplitude.
图 7 正常人脚背双模态成像 (a), (b) 待成像平面彩色多普勒超声图; (c)成像层面示意图; (d)−(g) 依次为脚背的热声图像, 680, 720和800 nm激发光声图像
Figure 7. (a), (b) The color Doppler ultrasound images; (c) the schematic of imaging plane; (d)−(g) TA image, 680 nm PA image, 720 nm PA image and 800 nm image of instep, respectively. TAM: Thermoacoustic Amplitude, PAM: Photoacoustic Amplitude.
-
[1] Shi J, Wong T T W, He Y, Li L, Wang L V 2019 Nat. Photonics 13 609 doi: 10.1038/s41566-019-0441-3 [2] Wong T T W, Zhang R, Zhang C, Hsu H C, Maslov K, Wang L, Shi J, Chen R, Shung K K, Zhou Q F, Wang L V 2017 Nat. Commun. 8 1386 doi: 10.1038/s41467-017-01649-3 [3] Wang Y C, Liang G R, Liu F, Chen Q, Xi L 2020 IEEE. Trans. Biomed. Eng. 99 1 [4] Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Hutter M A, Deán-Ben X L, Shoham S, Razansky D 2019 Nat. Biomed. Eng. 3 392 doi: 10.1038/s41551-019-0372-9 [5] Merčep E, Herraiz J L, Deán-Ben X L, Razansky D 2019 Ligh-Sci. Appl. 8 1 doi: 10.1038/s41377-018-0109-7 [6] Jiang H B 2015 Photoacoustic Tomography (Boca Raton, FL: CRC Press) pp1−50 [7] Ivankovic I, Merčep, Elena, Schmedt, C G, Deán-Ben X L, Razansky D 2019 Radiology 291 45 doi: 10.1148/radiol.2019181325 [8] Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, Olivo M 2019 Photoacoustics 16 100144 doi: 10.1016/j.pacs.2019.100144 [9] Kruger RA, Kopecky KK, Aisen AM, Reinecke DR, Kruger GA, Kiser WL Jr 1999 Radiology 211 275 doi: 10.1148/radiology.211.1.r99ap05275 [10] Wang X, Bauer D R, Witte R, Xin H 2012 IEEE. Trans. Biomed. Eng. 59 2782 doi: 10.1109/TBME.2012.2210218 [11] Huang L, Yao L, Liu L, Rong J, Jiang H B 2012 Appl. Phys. Lett. 101 244106 doi: 10.1063/1.4772484 [12] Qin H, Cui Y S, Wu Z J, Chen Q, Xing D 2020 IEEE. Photonics. J. 99 1 [13] Huang L, Li T, Jiang H 2017 Med. Phys. 44 1494 doi: 10.1002/mp.12138 [14] Chi Z H, Zhao Y, Yang J G, Li TT, Jiang H B 2018 IEEE. Trans. Biomed. Eng. 66 1598 [15] Zheng Z, Huang L, Jiang HB 2018 Appl. Phys. Lett. 113 253702 doi: 10.1063/1.5054652 [16] Eckhart AT, Balmer RT, See WA, et al. 2011 IEEE Trans. Biomed. Eng. 58 2238 doi: 10.1109/TBME.2011.2128319 [17] Patch S, Hull D, See W, Hanson G W 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 245 doi: 10.1109/TUFFC.2015.2513018 [18] Ku G, Fornage B D, Jin X, Xu M H, Hunt K K, Wang L V 2005 Technol. Cancer Res. T. 4 559 doi: 10.1177/153303460500400509 [19] Pramanik M, Ku G, Li C H, Wang L V 2008 Med. Phys. 35 2218 doi: 10.1118/1.2911157 [20] Ke H, Erpelding T N, Jankovic L, Liu C, Wang L V 2012 J. Biomed. Opt. 15 056010 [21] Merčep E, Deán-Ben X L, Razansky D 2017 IEEE. Trans. Med. Imaging. 36 2129 doi: 10.1109/TMI.2017.2706200 [22] Reinecke D R, Kruger R A, Lam R B, Delrio S P 2010 Proc. SPIE Int. Soc. Opt. Eng. 7564 489 [23] Li M C, Liu C B, Gong X J, Zheng R Q, Bai Y Y, Xing M Y, Du X M, Liu X Y, Zeng J, Lin R Q, Zhou H C, Wang S J, Lu G M, Zhu W, Fang C H, Song L 2018 Biomed. Opt. Express 9 1408 doi: 10.1364/BOE.9.001408 [24] American Laser Institute. American National Standards for the Safe Use of Lasers ANSIZ136.1. Orlando, FL: American Laser Institute, 2014 [25] Huang L, Ge S, Zheng Z, Jiang H B 2018 Med. Phys. 46 851 [26] IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields 3 kHz to 300 GHz, IEEE Standard C95.1; 1999 [27] Hoelen C G A, de Mul F F M 2001 Appl. Opt. 39 5872 [28] Jeon S, Park E Y, Choi W, Managuli R, Kim C 2019 Photoacoustics 15 100136 doi: 10.1016/j.pacs.2019.100136 [29] Zhang Y P, Li E, Zhang J, Yu C Y, Zheng H, Guo G F 2018 Rev. Sci. Instrum. 89 024701 doi: 10.1063/1.4993507 [30] Wang X, Huang L, Chi Z H, Jiang H B. 2021 Phy. Med. Biol. (Under Review) [31] Choi W, Park E Y, Jeon S, Kim C 2018 Biomed. Eng. Lett. 8 1 doi: 10.1007/s13534-018-0058-3 [32] Ji Z, Ding W Z, Ye F H, Lou C G 2016 Ultrason. Imaging 38 276 doi: 10.1177/0161734615601987 [33] Chi Z H, Liang X, Wang X, Huang L, Jiang H B 2020 IEEE J. Electromagnet. RF Microwaves Med. Biol. 99 1 [34] Yang J G, Zhang G, Wu M, Shang Q Q, Huang L, Jiang H B 2019 J. Biophotonics 12 e201900004