留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光器阵列后处理的混沌熵源获取高品质随机数

吴佳辰 宋峥 谢溢锋 周心雨 周沛 穆鹏华 李念强

吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数[J]. 机械工程学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
引用本文: 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数[J]. 机械工程学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
Wu Jia-Chen, Song Zheng, Xie Yi-Feng, Zhou Xin-Yu, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
Citation: Wu Jia-Chen, Song Zheng, Xie Yi-Feng, Zhou Xin-Yu, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034

基于激光器阵列后处理的混沌熵源获取高品质随机数

doi: 10.7498/aps.70.20202034
详细信息
    通讯作者:

    E-mail: peizhou@suda.edu.cn

    E-mail: nli@suda.edu.cn

  • 中图分类号: 42.55.Px, 05.45.-a, 05.45.Pq

High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser

  • 摘要: 本文提出采用可集成的激光器阵列后处理光反馈半导体激光器的输出, 进而获得无时延特征的优质混沌熵源, 进一步获取高速高品质随机数序列. 方案中采用常规的8位模数转换采样量化和多位最低有效位异或提取处理, 采用国际公认的随机数行业测试标准(NIST SP 800-22)来检验产生的序列. 结果表明, 通过激光器阵列后处理的混沌熵源所获取的随机数序列具有均匀的分布特性, 散点图无明显图案, 可以成功通过NIST SP 800-22的全部测试. 另外, 基于激光器阵列的可扩展性, 本方案可以拓展为可实现同时产生多路并行的高速高品质随机数发生器.

     

  • 图  基于激光器阵列后处理的混沌熵源获取高品质随机数的示意图( $ \lambda /4 $ $ 1/4 $ 波片, PD1、PD2为光电转换器, ADC为模数转换器, LSB为最低有效位, XOR为异或处理)

    Figure  1.  Schematic diagram of high quality random number generation based on the chaotic entropy source generated by ECSL and post-processed by phased-array semiconductor lasers (λ/4, 1/4 wave plate; PD1 and PD2, photo detector; ADC, analog-to-digital converter; LSB, least significant bit; XOR, exclusive OR).

    图  激光器输出混沌信号的时间序列(左列), 自相关函数谱(中列), 功率谱(右列) (a) 光反馈半导体激光器; (b) 注入激光器; (c) 注入激光器阵列

    Figure  2.  Time series (left column), autocorrelation function (middle column), and power spectra (right column) of the chaotic signal output by laser: (a) ECSL; (b) injection to a single laser A; (c) injection to phased-array lasers.

    图  经过激光器阵列后处理混沌熵源的ACF时延处峰值随着注入参数和激光器分离比d/a的演化情况 (a) d/a = 0.2; (b) d/a = 0.4; (c) d/a = 0.6; (d) d/a = 1.0

    Figure  3.  The evaluation of the ACF peak value located around the feedback delay of the chaotic entropy source that is processed by the phased-array in the plane of injection parameters for several values of laser separation: (a) d/a = 0.2, (b) d/a = 0.4, (c) d/a = 0.6, (d) d/a = 1.0.

    图  激光器B输出的混沌信号量化后的统计直方图 (a) 8位ADC输出; (b) 3-LSB输出; (c) XOR输出

    Figure  4.  Statistical histogram of the quantized chaotic signal of the laser B: (a) The output of 8 bit ADC; (b) the output of 3-LSB; (c) the output of XOR.

    图  散点图

    Figure  5.  Scatter diagram.

    图  激光器输出的时间序列与自相关函数 (a) A激光器输出的时间序列; (b) A激光器输出的自相关函数; (c) B激光器输出的时间序列; (d) B激光器输出的自相关函数

    Figure  6.  Time series and autocorrelation function of the lasers: (a) Time series of laser A; (b) autocorrelation function of laser A; (c) time series of laser B; (d) autocorrelation function of laser. B.

    表  1  NIST统计测试结果

    Table  1.   Result of NIST statistical tests.

    测试名称 P-value 概率 结果
    频数 0.538182 0.992 通过
    块内频数 0.239266 0.982 通过
    累加 0.755819 0.994 通过
    游程 0.140453 0.988 通过
    块内最长游程 0.965860 0.988 通过
    矩阵秩 0.281232 0.990 通过
    离散傅里叶变换 0.206629 0.982 通过
    非重叠模块匹配 0.020831 0.982 通过
    重叠模块匹配 0.699313 0.984 通过
    通用统计 0.510153 0.994 通过
    近似熵 0.699313 0.994 通过
    随机游动 0.443665 0.986 通过
    随机游动变量 0.290158 0.983 通过
    连续性 0.096578 0.984 通过
    线性复杂度 0.340858 0.986 通过
    下载: 导出CSV
  • [1] Shannon C E 1949 Bell Syst. Tech. J. 28 656 doi: 10.1002/j.1538-7305.1949.tb00928.x
    [2] Durt T, Beimonte C, Lamoureux L P, Panajotov K, van den Berghe F, Thienpont H 2013 Phys. Rev. A. 87 022339 doi: 10.1103/PhysRevA.87.022339
    [3] Williams C R S, Salevan J C, Li X W, Roy R, Murphy T E 2010 Opt. Express 18 23584 doi: 10.1364/OE.18.023584
    [4] Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E. 81 051137 doi: 10.1103/PhysRevE.81.051137
    [5] Ma X F, Xu F H, Xu H, Tan X Q, Qi B, Lo H K 2013 Phys. Rev. A. 87 062327 doi: 10.1103/PhysRevA.87.062327
    [6] David P. Rosin, Damien Rontani, Daniel J. Gauthier 2013 Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87 040902 doi: 10.1103/PhysRevE.87.040902
    [7] Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634 doi: 10.1364/OE.22.006634
    [8] 郭弘, 刘钰, 党安红, 韦韦 2009 科学通报 54 3651 doi: 10.1360/972009-1549

    Guo H, Liu Y, Dang A H, Wei W 2009 Chin. Sci. Bull. 54 3651 doi: 10.1360/972009-1549
    [9] Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820 doi: 10.1103/PhysRevA.83.023820
    [10] 周庆, 胡月, 廖晓峰 2008 物理学报 57 5413 doi: 10.7498/aps.57.5413

    Zhou Q, Hu Y, Liao X F 2008 Acta Phys. Sin. 57 5413 doi: 10.7498/aps.57.5413
    [11] 李念强 2016 博士学位论文 (成都: 西南交通大学)

    Li N Q 2016 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)
    [12] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728 doi: 10.1038/nphoton.2008.227
    [13] Reidier I, Aviad Y, Rosenblush M, Kanter I 2009 Phys. Rev. Lett. 103 024102 doi: 10.1103/PhysRevLett.103.024102
    [14] Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58 doi: 10.1038/nphoton.2009.235
    [15] Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A. 83 031803 doi: 10.1103/PhysRevA.83.031803
    [16] Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763 doi: 10.1364/OE.18.018763
    [17] Zhang J Z, Wang Y C, Liu M, Xue L G, Li P, Wang A B, Zhang M J 2012 Opt. Express 20 7496 doi: 10.1364/OE.20.007496
    [18] Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360 doi: 10.1364/OE.18.020360
    [19] Wu J G, Tang X, Wu Z M, Xia G Q, Feng G Y 2012 Laser Phys. 22 1476 doi: 10.1134/S1054660X12100246
    [20] Li X Z, Chan S C 2013 IEEE J. Quantum Electron. 49 829 doi: 10.1109/JQE.2013.2279261
    [21] Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452 doi: 10.1364/OE.21.020452
    [22] Li P, Zhang J G, Sang L X, Liu X L, Guo Y Q, Guo X M, Wang A B, Shore K A, Wang Y C 2017 Opt. Lett. 42 2699 doi: 10.1364/OL.42.002699
    [23] Li P, Sun Y Y, Liu X L, Yi X G, Zhang J G, Guo X M, Guo Y Q, Wang Y C 2016 Opt. Lett. 41 3347 doi: 10.1364/OL.41.003347
    [24] 韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才 2017 物理学报 66 124203 doi: 10.7498/aps.66.124203

    Han T, Liu X L, Li P, Guo X M, Guo Y Q, Wang Y C 2017 Acta Phys. Sin. 66 124203 doi: 10.7498/aps.66.124203
    [25] 赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才 2017 物理学报 66 050501 doi: 10.7498/aps.66.050501

    Zhao D L, Li P, Liu X L, Guo X M, Guo Y Q, Zhang J G, Wang Y C 2017 Acta Phys. Sin. 66 050501 doi: 10.7498/aps.66.050501
    [26] Tang X, Wu Z M, Wu J G, Deng T, Zhong Z Q, Chen J J, Xia G Q 2014 Laser Phys. Lett. 12 015003 doi: doi.org/10.1088/1612-2011/12/1/015003
    [27] Ran C, Tang X, Wu Z M, Xia G Q 2018 Laser Phys. 28 126202 doi: 10.1088/1555-6611/aae06f
    [28] 姚晓洁, 唐曦, 吴正茂, 夏光琼 2018 物理学报 67 024204 doi: 10.7498/aps.67.20171902

    Yao X J, Tang X, Wu Z M, Xia G Q 2018 Acta Phys. Sin. 67 024204 doi: 10.7498/aps.67.20171902
    [29] Li N Q, Pan W, Xiang S Y, Zhao Q C, Zhang L Y 2014 IEEE Photon. Technol. Lett. 26 1886 doi: 10.1109/LPT.2014.2341623
    [30] Mu P H, Pan W, Xiang S Y, Li N Q, Liu X K, Zou X H 2015 Mod. Phys. Lett. B 29 1550142 doi: 10.1142/S0217984915501420
    [31] Wang Y, Xiang S Y, Wang B, Cao X Y, Wen A J, Hao Y 2019 Opt. Express 27 8446 doi: 10.1364/OE.27.008446
    [32] Xiang S Y, Wang B, Wang Y, Han Y N, Wen A J, Hao Y 2019 J. Light. Technol. 37 3987 doi: 10.1109/JLT.2019.2920476
    [33] Xue C P, Jiang N, Qiu K, Lv Y X 2015 Opt. Express 23 14510 doi: 10.1364/OE.23.014510
    [34] Zhao A K, Jiang N, Wang Y J, Liu S Q, Li B C, Qiu K 2019 Opt. Lett. 44 5957 doi: 10.1364/OL.44.005957
    [35] Li N Q, Pan W, Locquet A, Citrin D S 2015 Opt. Lett. 40 4416 doi: 10.1364/OL.40.004416
    [36] Li S S, Li X Z, Chan S C 2018 Opt. Lett. 43 4751 doi: 10.1364/OL.43.004751
    [37] Xiang S Y, Wen A J, Pan W, Lin L, Zhang H X, Zhang H, Guo X X, Li J F 2016 J. Light. Technol. 34 4221 doi: 10.1109/JLT.2016.2597865
    [38] Jiang N, Wang C, Xue C P, Li G L, Lin S Q, Qiu K 2017 Opt. Express 25 14359 doi: 10.1364/OE.25.014359
    [39] Jiang X X, Liu D M, Cheng M F, Deng L, Fu S N, Zhang M M, Tang M, Shum P 2016 Opt. Lett. 41 1157 doi: 10.1364/OL.41.001157
    [40] Ma Y T, Xiang S Y, Guo X X, Song Z W, Wen A J, Hao Y 2020 Opt. Express 28 1665 doi: 10.1364/OE.384378
    [41] Zhou P, Fang Q, Li N Q 2020 Opt. Lett. 45 399 doi: 10.1364/OL.381782
    [42] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dary J, Vo S 2001 http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html [2020-11-21]
    [43] Adams M J, Li N Q, Cemlyn B R, Susanto H, Henning I D 2017 Phys. Rev. A 95 053869 doi: 10.1103/PhysRevA.95.053869
    [44] Fang Q, Zhou P, Mu P H, Li N Q 2021 IEEE J. Quantum Electron. 57 1200109.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  219
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2020-12-19
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回