留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变

尤冰凌 刘雪莹 成书杰 王晨 高先龙

尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变[J]. 机械工程学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
引用本文: 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变[J]. 机械工程学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long. The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
Citation: You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long. The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066

Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变

doi: 10.7498/aps.70.20202066
详细信息
    通讯作者:

    E-mail: gaoxl@zjnu.edu.cn

  • 中图分类号: 02.30.Mv, 42.50.Ar

The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model

More Information
  • 摘要: 采用平均场近似的方法, 分别研究了Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变: Mott绝缘体相-超流体相量子相变, 探索了光的聚束-反聚束行为, 研究了Kerr非线性作用对量子相变与光子统计特征的影响. 研究结果表明, 在Rabi晶格模型中二能级原子和光子相互作用强度g和格点之间光子跃迁强度J的增大会使晶格体系从Mott绝缘体相向超流体相转变, 同时, 光子统计行为由聚束转变为反聚束, 而Kerr非线性强度的增大抑制了Mott绝缘体相-超流体相相变, 但促进了光子聚束与反聚束之间的转变.

     

  • 图  (a), (b)平均场近似下, 不同晶格模型关于超流序参量 $ A = \braket{a} $ $ J \text {-} g $ 相图 (a) JC晶格模型; (b) Rabi 晶格模型. 横坐标为格点之间的光子跃迁强度 $ J $ , 纵坐标为二能级原子和光子相互作用强度 $ g $ , 横纵坐标的单位为 $ \omega_0 $ , 颜色条表示超流序参量 $ A = \braket{a} $ 的大小. 深蓝色表示Mott绝缘相, 浅黄色表示超流体相. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $ , 光子截断数 $ N = 20 $ . (c), (d)对于不同的 $ J $ , 不同晶格模型的超流序参量 $ A $ $ g $ 变化的图像 (c) JC晶格模型; (d) Rabi晶格模型

    Figure  1.  (a), (b) Under the mean field approximation, the $ J \text {-} g $ phase diagram of different lattice models with respect to the superfluid order parameter $ A = \braket{a} $ : (a) JC lattice model; (b) Rabi lattice model. The abscissa is the photon transition intensity $ J $ between the lattice, the ordinate is the two-level atom and photon interaction strength $ g $ , the unit of the abscissa and the ordinate is $ \omega_0 $ , and the color bar represents the value of the superfluid order parameter $ A = \braket{a} $ . Dark blue indicates Mott insulating phase, and light yellow indicates superfluid phase. Other parameters are taken as $ \mathop{\omega_{0} = \omega_{1}} = 1 $ , and the number of the photon truncation $ N = 20 $ . (c), (d) For different $ J $ , the superfluid order parameter $ A $ of different lattice models varies with $ g $ : (c) JC lattice model; (d) Rabi lattice model.

    图  平均场近似下, 不同晶格模型关于二阶关联函数 $ g^{2}(0) $ $J\text {-} g$ 相图 (a) JC晶格模型; (b) Rabi晶格模型. 横坐标为格点之间的光子跃迁强度 $ J $ , 纵坐标为二能级原子和光子相互作用强度 $ g $ , 横纵坐标的单位为 $ \omega_0 $ , 颜色条表示二阶关联函数 $ g^{2}(0) $ 的值. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $ , 光子截断数 $ N = 20 $

    Figure  2.  Under the mean field approximation, the $ J \text {-} g $ phase diagram of different lattice models with respect to the second-order correlation function $ g^{2}(0) $ : (a) JC lattice model; (b) Rabi lattice model. The abscissa is the photon transition intensity $ J $ between the lattice, the ordinate is the two-level atom and photon interaction strength $ g $ , the unit of the abscissa and the ordinate is $ \omega_0 $ , the color bar is represented by the value of the second-order correlation function $ g^{2}(0) $ . $ \mathop{\omega_{0} = \omega_{1}} = 1 $ , and the number of photon truncation $ N = 20 $ .

    图  Kerr效应下不同晶格模型关于超流序参量 $ A = \braket{a} $ $ \kappa \text {-} g $ 相图 (a) JC晶格模型; (b) Rabi 晶格模型. 横坐标为Kerr非线性强度 $ \kappa $ , 纵坐标为二能级原子和光子相互作用强度 $ g $ , 横纵坐标的单位为 $ \omega_0 $ , 颜色条表示超流序参量 $ A $ 的大小. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $ , $ J = 0.05 $ , 光子截断数 $ N = 20 $

    Figure  3.  The $ \kappa \text {-} g $ phase diagram of different lattice models under the Kerr effect with respect to the superfluid order parameter $ A = \braket{a} $ : (a) JC lattice model; (b) Rabi lattice model. The abscissa is the Kerr nonlinear intensity $ \kappa $ , the ordinate is the two-level atom and photon interaction strength $ g $ , the unit of the abscissa and the ordinate is $ \omega_0 $ , and the color bar represents the value of the superfluid order parameter $ A $ . Other parameters are taken as $ \mathop{\omega_{0} = \omega_{1}} = 1 $ , $ J = 0.05 $ , and the number of photon truncation $ N = 20 $ .

    图  Kerr效应下不同晶格模型关于二阶关联函数 $ g^{2}(0) $ $ \kappa \text {-} g $ 相图 (a) JC晶格模型; (b) Rabi晶格模型. 横坐标为Kerr非线性强度 $ \kappa $ , 纵坐标为二能级原子和光子相互作用强度 $ g $ , 横纵坐标的单位为 $ \omega_0 $ , 颜色条表示二阶关联函数 $ g^{2}(0) $ . 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $ , $ J = 0.05 $ , 光子截断数 $ N = 20 $

    Figure  4.  The $ \kappa \text {-} g $ phase diagram of different lattice models under the Kerr effect with respect to the second-order correlation function $ g^{2}(0) $ : (a) JC lattice model; (b) Rabi lattice model. The abscissa is the Kerr nonlinear intensity $ \kappa $ , the ordinate is the two-level atom and photon interaction strength $ g $ , the unit of the abscissa and the ordinate is $ \omega_0 $ , and the color bar represents the value of second-order correlation function $ g^{2}(0) $ . Other parameters are taken as $ \mathop{\omega_{0} = \omega_{1}} = 1 $ , $ J = 0.05 $ , and the number of photon truncation $ N = 20 $ .

  • [1] Hartmann M J, Brandao F G S L, Plenio M B 2006 Nat. Phys. 2 849 doi: 10.1038/nphys462
    [2] Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856 doi: 10.1038/nphys466
    [3] Angelakis D G, Santos M F, Bose S 2007 Phys. Rev. A 76 031805 doi: 10.1103/PhysRevA.76.031805
    [4] Rossini D, Fazio R 2007 Phys. Rev. Lett. 99 186401 doi: 10.1103/PhysRevLett.99.186401
    [5] Aichhorn M, Hohenadler M, Tahan C, Littlewood P B 2008 Phys. Rev. Lett. 100 216401 doi: 10.1103/PhysRevLett.100.216401
    [6] Na N, Utsunomiya S, Tian L, Yamamoto Y 2008 Phys. Rev. A 77 031803 doi: 10.1103/PhysRevA.77.031803
    [7] Carusotto I, Gerace D, Türeci H E, De Liberato S, Ciuti C, and Imamoğlu A 2009 Phys. Rev. Lett. 103 033601 doi: 10.1103/PhysRevLett.103.033601
    [8] Schmidt S, Blatter G 2009 Phys. Rev. Lett. 103 086403 doi: 10.1103/PhysRevLett.103.086403
    [9] Koch J, Le Hur K 2009 Phys. Rev. A 80 023811 doi: 10.1103/PhysRevA.80.023811
    [10] Pippan P, Evertz H G, Hohenadler M 2009 Phys. Rev. A 80 033612 doi: 10.1103/PhysRevA.80.033612
    [11] Ferretti S, Andreani L C, Türeci H E, Gerace D 2010 Phys. Rev. A 82 013841 doi: 10.1103/PhysRevA.82.013841
    [12] Umucalilar R O, Carusotto I 2011 Phys. Rev. A 84 043804 doi: 10.1103/PhysRevA.84.043804
    [13] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87 doi: 10.1038/nature03804
    [14] Tian L, Carmichael H J 1992 Phys. Rev. A 46 R6801 doi: 10.1103/PhysRevA.46.R6801
    [15] Imamoḡlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467 doi: 10.1103/PhysRevLett.79.1467
    [16] Rebic S, Tan S M, Parkins A S, Walls D F 1999 J. Opt. B 1 490 doi: 10.1088/1464-4266/1/4/322
    [17] Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885 doi: 10.1103/RevModPhys.80.885
    [18] Schmidt S, Koch J 2013 Ann. Phys. 525 395 doi: 10.1002/andp.201200261
    [19] Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39 doi: 10.1038/415039a
    [20] Lundqvist S, Nilsson N B 1989 Physics of Low-dimensional Systems (Sweden: World Scientific) pp89−95
    [21] Fisher M P, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546 doi: 10.1103/PhysRevB.40.546
    [22] van Oosten D, van Der Straten P, Stoof H T C 2001 Phys. Rev. A 63 053601 doi: 10.1103/PhysRevA.63.053601
    [23] van Oosten D, van Der Straten P, Stoof H T C 2003 Phys. Rev. A 67 033606 doi: 10.1103/PhysRevA.67.033606
    [24] Sheshadri K, Krishnamurthy H R, Pandit R, Ramakrishnan T V 1993 Europhys. Lett. 22 257 doi: 10.1209/0295-5075/22/4/004
    [25] Krauth W, Trivedi N 1991 Europhys. Lett. 14 627 doi: 10.1209/0295-5075/14/7/003
    [26] Krauth W, Trivedi N, Ceperley D 1991 Phys. Rev. Lett. 67 2307 doi: 10.1103/PhysRevLett.67.2307
    [27] Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602 doi: 10.1103/PhysRevA.70.045602
    [28] Albus A, Illuminati F, Eisert J 2003 Phys. Rev. A 68 023606 doi: 10.1103/PhysRevA.68.023606
    [29] Lewenstein M, Santos L, Baranov M A, Fehrmann H 2004 Phys. Rev. Lett. 92 050401 doi: 10.1103/PhysRevLett.92.050401
    [30] Illuminati F, Albus A 2004 Phys. Rev. Lett. 93 090406 doi: 10.1103/PhysRevLett.93.090406
    [31] Cramer M, Eisert J, Illuminati F 2004 Phys. Rev. Lett. 93 190405 doi: 10.1103/PhysRevLett.93.190405
    [32] Fehrmann H, Baranov M A, Damski B, Lewenstein M, Santos L 2004 Opt. Commun. 243 23 doi: 10.1016/j.optcom.2004.03.094
    [33] Littlewood P B, Eastham P R, Keeling J M J, Marchetti F M, Simons B D, Szymanska M H 2004 J. Phys. Condens. Matter 16 S3597 doi: 10.1088/0953-8984/16/35/003
    [34] He Y, Zhu X, Mihalache D, Liu J, Chen Z 2012 Phys. Rev. A 85 013831 doi: 10.1103/PhysRevA.85.013831
    [35] Eguchi K, Takagi Y, Nakagawa T, Yokoyama T 2012 Phys. Rev. B 85 174415 doi: 10.1103/PhysRevB.85.174415
    [36] Vitali D, Fortunato M, Tombesi P 2000 Phys. Rev. Lett. 85 445 doi: 10.1103/PhysRevLett.85.445
    [37] Angelakis D G, Dai L, Kwek L C 2010 Europhys. Lett. 91 10003 doi: 10.1209/0295-5075/91/10003
    [38] Patargias N, Bartzis V, Jannussis A 1995 Phys. Scr. 52 554 doi: 10.1088/0031-8949/52/5/011
    [39] Bu S P, Zhang G F, Liu J, Chen Z Y 2008 Phys. Scr. 78 065008 doi: 10.1088/0031-8949/78/06/065008
    [40] Cordero S, Récamier J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135502 doi: 10.1088/0953-4075/44/13/135502
    [41] Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936 doi: 10.1364/OL.21.001936
    [42] Harris S E, Hau L V 1999 Phys. Rev. Lett. 82 4611 doi: 10.1103/PhysRevLett.82.4611
    [43] Niu Y, Gong S 2006 Phys. Rev. A 73 053811 doi: 10.1103/PhysRevA.73.053811
    [44] Glauber R J 1963 Phys. Rev. 130 2529 doi: 10.1103/PhysRev.130.2529
    [45] Gomes C B C, Almeida F A G, Souza A M C 2016 Phys. Lett. A 38 1799 doi: 10.1016/j.physleta.2016.03.018
  • 加载中
图(4)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  239
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-06
  • 修回日期:  2021-01-04
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回