留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多组元掺杂提升Cu3SbSe4基固溶体的热电性能

王莫凡 应鹏展 李勰 崔教林

王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能[J]. 机械工程学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
引用本文: 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能[J]. 机械工程学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
Citation: Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094

多组元掺杂提升Cu3SbSe4基固溶体的热电性能

doi: 10.7498/aps.70.20202094
详细信息
    通讯作者:

    E-mail: ypz3889@cumt.edu.cn

    E-mail: cuijiaolin@163.com

  • 中图分类号: 73.50.Lw, 61.50.-f, 61.82.Bg, 71.20.Nr

Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions

  • 摘要: Cu3SbSe4是一种具有黄铜矿结构的三元p-型半导体材料, 在热电领域颇受重视. 本次工作采用在Cu3SbSe4中先掺杂Sn与S, 然后再掺杂Ga2Te3这一多组元掺杂方式, 通过能带及晶体结构计算, 了解多组元掺杂后热电性能提升的结构因素. 能带计算表明, 共掺杂Sn与S后, 禁带区域萌生出杂质带, 导致材料的载流子浓度(nH)和电学性能大幅提高. 在691 K时, 功率因子(PF)从本征的5.2 μW·cm–1·K–2增大到13.0 μW·cm–1·K–2. 虽然Ga占位在Sb或Te占位在Se位置对能带结构作用甚少, 但四面体[SbSe4]和[SeCu3Sb]的键长和键角发生了改变, 从而产生了明显的局部点阵畸变. 因此, 在691 K时, 晶格热导率(κL)从1.23 W·K–1·m–1降低到0.81 W·K–1·m–1, 有效地抑制了总热导率(κ)的提高. 最终, 材料的最大热电优值(ZT)为0.64, 而本征Cu3SbSe4的ZT值为0.26.

     

  • 图  (a) (Cu3Sb0.9Sn0.1Se3.6S0.4)1–x(Ga2Te3)x (x = 0~0.0175)的粉末XRD图谱; (b) 晶格结构常数ac; (c) 四方相晶体结构变形参数η; (d) 内部点阵结构扭曲参数ψ

    Figure  1.  (a) X-ray diffraction patterns of the powders (Cu3Sb0.9Sn0.1Se3.6S0.4)1–x(Ga2Te3)x (x = 0~0.0175); (b) lattice constants a and c; (c) tetragonal deformation parameters η; (d) internal lattice distortion parameter ψ.

    图  三种不同占位材料的计算形成能(Ef) (a) 本征Cu24Sb8Se32 (Ef = 0), 作为比较对象; (b) Sn和S共掺杂的Cu24Sb7Sn1Se28S4; (c) Ga占位在Sb位置(Cu24Sb7Ga1Se32); (d) Te 占位在Se位置(Cu24Sb8Se31Te1). Ef值均是相对于本征Cu24Sb8Se32的形成能

    Figure  2.  Formation energies (Ef) of three solid solutions with different element occupations. (a) Pristine Cu24Sb8Se32 (Ef = 0) for comparidon; (b) Sn and S co-doped Cu24Sb7Sn1Se28S4; (c) Ga residing at Sb site (Cu24Sb7Ga1Se32); (d) Te residing at Se site (Cu24Sb8Se31Te1). The Ef values are their corresponding formation energies in comparison to that of the pristine structure.

    图  各种材料的能带结构与态密度(DOS) (a) Cu24Sb8Se32; (b) Sn and S co-doped Cu24Sb7Sn1Se28S4; (c) Ga doped Cu24Sb7Ga1Se32; (d) Te doped Cu24Sb8Se31Te1 compounds

    Figure  3.  Band structures and the density of the states (DOS) of different materials: (a) Pristine Cu24Sb8Se32; (b) Sn and S co-doped Cu24Sb7Sn1Se28S4; (c) Ga doped Cu24Sb7Ga1Se32; (d) Te doped Cu24Sb8Se31Te1 compounds.

    图  Te和Ga分别占位在Se和Sb前后的多面体[SeCu3Sb]和[SbSe4]结构参数(键长和键角)

    Figure  4.  Structural parameters (bond lengths and angles) of the polyhedrons [SeCu3Sb] and [SbSe4] before and after residing of Te and Ga at Se and Sb sites respectively.

    图  (a) 在室温下(Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0~0.0175)材料的霍尔载流子浓度(nH)与Ga2Te3含量(x值)的关系; (b) 在室温下迁移率(μ)与Ga2Te3含量(x值)的关系

    Figure  5.  (a) Hall carrier concentration (nH) as a function of Ga2Te3 content (x value) at room temperature (RT) for (Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0~0.0175); (b) mobility (μ) as a function of Ga2Te3 content (x value) at RT.

    图  (Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0.01—0.015)材料的热电性能与温度的关系, 本征Cu3SbSe4的性能作为比较 (a) Seebeck 系数(α)与温度的关系; (b) 电导率(σ)与温度的关系; (c) 功率因子(PF) 与温度的关系; (d) 总热导率(κ)与温度的关系; (e) 晶格热导率(κL)与温度的关系; (f) 热电优值(ZT)与温度的关系

    Figure  6.  TE performance of (Cu3Sb0.9Sn0.1Se3.6S0.4)(Ga2Te3)x (x = 0.01–0.015) as a function of temperature, and the TE performance of pristine Cu3SbSe4 is provided for comparison: (a) Seebeck coefficients as a function of temperature; (b) electrical conductivities as a function of temperature; (c) power factor (PF) as a function of temperature; (d) total thermal conductivities (κ) as a function of temperature; (e) lattice part (κL) as a function of temperature; (f) TE figure of merit (ZT) as a function of temperature.

  • [1] Wei T, Wang H, Gibbs Z, Wu C, Snyder G J, Li J 2014 J. Mater. Chem. A 2 13527 doi: 10.1039/C4TA01957A
    [2] Zhang D, Yang J Y, Jiang Q H, Zhou Z W, Li X, Xin J W, Basit A, Ren Y Y, He X, Chu W J, Hou J D 2017 ACS Appl. Mater. Interfaces 9 28558 doi: 10.1021/acsami.7b08121
    [3] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清 2017 物理学报 66 167201 doi: 10.7498/aps.66.167201

    Chen L N, Liu Y F, Zhang J Y, Yang J, Xing J J, Luo J, Zhang W Q 2017 Acta Phys. Sin. 66 167201 doi: 10.7498/aps.66.167201
    [4] Zhao D G, Wu D, Bo L 2017 Energies 10 1524 doi: 10.3390/en10101524
    [5] Chang C H, Chen C L, Chiu W T, Chen Y Y 2017 Mater. Lett. 186 227 doi: 10.1016/j.matlet.2016.10.011
    [6] Zhang D, Yang J Y, Jiang Q H, Fu L W, Xiao Y, Luo Y B, Zhou Z W 2016 Mater. Des. 98 150 doi: 10.1016/j.matdes.2016.03.001
    [7] Li Y Y, Qin X Y, Li D, Li X Y, Liu Y F, Zhang J, Song C J, Xin H X 2015 RSC Adv. 5 31399 doi: 10.1039/C5RA02030A
    [8] Yang C Y, Huang F Q, Wu L M, Xu K 2011 J. Phys. D: Appl. Phys. 44 295404 doi: 10.1088/0022-3727/44/29/295404
    [9] Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2019 Mater. Res. Bull. 113 38 doi: 10.1016/j.materresbull.2019.01.010
    [10] Prasad K S, Rao A 2019 J. Mater. Sci. - Mater. Electron. 30 16596 doi: 10.1007/s10854-019-02038-w
    [11] Wang B Y, Wang Y L, Zheng S Q, Liu S C, Li J, Chang S Y, An T, Sun W L, Chen Y X 2019 J. Alloys Compd. 806 676 doi: 10.1016/j.jallcom.2019.07.292
    [12] Skoug E J, Cain J D, Morelli D T 2011 Appl. Phys. Lett. 98 261911
    [13] Zhang D, Yang J Y, Bai H C, Luo Y B, Wang B, Hou S H, Li Z L, Wang S F 2019 J. Mater. Chem. A 7 17648 doi: 10.1039/C9TA05115E
    [14] Wang B Y, Zheng S Q, Chen Y X, Wu Y, Li J, Ji Z, Mu Y N, Wei Z B, Liang Q, Liang J X 2020 J. Phys. Chem. C 124 10336 doi: 10.1021/acs.jpcc.0c01465
    [15] Li J M, Li D, Song C J, Wang L, Xin H X, Zhang J, Qin X Y 2019 Intermetallics 109 68 doi: 10.1016/j.intermet.2019.03.009
    [16] Zhou T, Wang L J, Zheng S Q, Hong M, Fang T, Bai P P, Chang S Y, Cui W L, Shi X L, Zhao H Z, Chen Z G 2018 Nano Energy 49 221 doi: 10.1016/j.nanoen.2018.04.035
    [17] Wang B Y, Zheng S Q, Wang Q, Li Z L, Li J, Zhang Z P, Wu Y, Zhu B S, Wang S Y, Chen Y X, Chen L Q, Chen Z G 2020 Nano Energy 71 104658 doi: 10.1016/j.nanoen.2020.104658
    [18] Li D, Li R, Qin X Y, Zhang J, Song C J, Wang L, Xin H X 2013 CrystEngComm 15 7166 doi: 10.1039/c3ce40956b
    [19] Li D, Ming H W, Li J M, Jabar B, Xu W, Zhang J, Qin X Y 2020 ACS Appl. Mater. Interfaces 12 3886 doi: 10.1021/acsami.9b20103
    [20] Xie D D, Zhang B, Zhang A J, Chen Y J, Yan Y C, Yang H Q, Wang G W, Wang G Y, Han H D, Han G, Lu X, Zhou X Y 2018 Nanoscale 10 14546 doi: 10.1039/C8NR03550D
    [21] Garcia G, Palacios P, Cabot A, Wahnon P 2018 Inorg. Chem. 57 7321 doi: 10.1021/acs.inorgchem.8b00980
    [22] Do D T, Mahanti D 2015 J. Alloys Compd. 625 346 doi: 10.1016/j.jallcom.2014.11.031
    [23] Skoug E J, Cain J D, Morelli D T 2010 Appl. Phys. Lett. 96 181905 doi: 10.1063/1.3425886
    [24] Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York: Springer) p37
    [25] Min L, Ying P Z, Li X, Cui J L 2020 J. Phys. D: Appl. Phys. 53 075304 doi: 10.1088/1361-6463/ab590e
    [26] Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101 doi: 10.1063/1.2940591
    [27] Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464 doi: 10.1039/C6TA06033A
    [28] Guymont M, Tomas A, Guittard M 1992 Philos. Mag. A 66 133 doi: 10.1080/01418619208201518
    [29] Kim H, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506 doi: 10.1063/1.4908244
    [30] Blochl P E 1994 Phys. Rev. B 50 17953 doi: 10.1103/PhysRevB.50.17953
    [31] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169 doi: 10.1103/PhysRevB.54.11169
    [32] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15 doi: 10.1016/0927-0256(96)00008-0
    [33] Pulay P 1980 Chem. Phys. Lett. 73 393 doi: 10.1016/0009-2614(80)80396-4
    [34] Zeier W G, Pei Y Z, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726 doi: 10.1021/ja308627v
    [35] Zhao L L, Lin N M, Han Z K, Li X, Wang H Y, Cui J L 2019 Adv. Electron. Mater 5 1900485 doi: 10.1002/aelm.201900485
    [36] Moreno E, Quintero M, Morocoima M, Quintero E, Grima P, Tovar R, Bocaranda P, Delgado G E, Contreras J E, Mora A E, Briceño J M, Godoy R A, Fernandez J L, Henao J A, Macías M A 2009 J. Alloys Compd. 486 212 doi: 10.1016/j.jallcom.2009.07.066
    [37] Cui J L, He T T, Han Z K, Liu X L, Du Z L 2018 Sci. Rep. 8 8202 doi: 10.1038/s41598-018-26362-z
    [38] Do D T, Mahanti S D 2014 J. Phys. Chem. Solids 75 477 doi: 10.1016/j.jpcs.2013.12.004
    [39] Han M K, Hoang K, Kong H J, Pcionek R, Uher C, Paraskevopoulos K M, Mahanti S D, Kanatzidis M G 2008 Chem. Mater. 20 3512 doi: 10.1021/cm703661g
    [40] Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510 doi: 10.1039/C1EE02612G
    [41] Wiendlocha B, Vaney J B, Candolfi C, Dauscher A, Lenoir B, Tobola J 2018 Phys. Chem. Chem. Phys. 20 12948 doi: 10.1039/C8CP00431E
    [42] Li M, Luo Y, Cai G M, Li X, Li X Y, Han Z K, Lin X Y, Sarker D, Cui J L 2019 J. Mater. Chem. A 7 2360 doi: 10.1039/C8TA10741F
    [43] Zhang L, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Nano Lett. 18 1592 doi: 10.1021/acs.nanolett.7b03933
    [44] Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125 doi: 10.1002/adma.201202919
    [45] Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882 doi: 10.1103/PhysRevB.29.1882
    [46] Wu W, Li Y, Du Z, Meng Q, Sun Z, Ren W, Cui J 2013 Appl. Phys. Lett. 103 011905 doi: 10.1063/1.4813088
    [47] Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822 doi: 10.1103/PhysRevB.28.5822
  • 加载中
图(6)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  201
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 修回日期:  2020-12-24
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回