留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

级联环境下三量子比特量子关联动力学研究

宋悦 李军奇 梁九卿

宋悦, 李军奇, 梁九卿. 级联环境下三量子比特量子关联动力学研究[J]. 机械工程学报, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
引用本文: 宋悦, 李军奇, 梁九卿. 级联环境下三量子比特量子关联动力学研究[J]. 机械工程学报, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
Song Yue, Li Jun-Qi, Liang Jiu-Qing. Dynamics of quantum correlation for three qubits in hierarchical environment[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
Citation: Song Yue, Li Jun-Qi, Liang Jiu-Qing. Dynamics of quantum correlation for three qubits in hierarchical environment[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133

级联环境下三量子比特量子关联动力学研究

doi: 10.7498/aps.70.20202133
详细信息
    通讯作者:

    E-mail: ljqsxu@163.com

  • 中图分类号: 03.65.Ud, 03.67.Mn, 03.65.Yz, 42.50.Pq

Dynamics of quantum correlation for three qubits in hierarchical environment

More Information
  • 摘要: 基于与各自的级联环境相互耦合的三个独立的量子比特系统, 详细考察了强、弱耦合体系下腔-腔耦合强度Ω和腔衰减率Γ1对负性纠缠度、Bell非定域性和纠缠目击的影响. 结果表明: Bell非定域性和纠缠目击都可以出现猝死和猝生现象; Γ1 = 0时, 随着Ω的增加, 三者在历经短时阻尼振荡后, 均会随时间达到各自的稳定值, 且该稳定值随着Ω的增大而增大. 同时, 三者在弱耦合体系的量值或存活时间都优于强耦合体系. 此外, 非零Γ1对量子关联有着很大的负面效应. 于是, 为了更好地抑制量子关联损失, 进一步分析了弱测量和测量反转操作的有效调控作用, 得到一些有趣的结果.

     

  • 图  耦合强度 $\varOmega $ 取不同值时, 负性纠缠度 ${N_3}$ 、Bell非定域性 $\left| {\left\langle {{B}} \right\rangle } \right| - 1$ 和纠缠目击 $ - {\rm{EWs}}$ 在强耦合体系 $g = 0.5\varGamma $  ((a)—(c))和弱耦合体系 $g = 0.2\varGamma $ ((d)—(f))下随无量纲时间 $\varGamma t$ 的变化曲线. 其中, ${\varGamma _1} = 0$

    Figure  1.  Time evolution of Negativity ${N_3}$ , Bell non-locality $\left| {\left\langle {{B}} \right\rangle } \right| - 1$ and entanglement witnesses $ - {\rm{EWs}}$ as the function of dimensionless time $\varGamma t$ for the different values of coupling strength $\varOmega $ in the strong coupling regime $g = 0.5\varGamma $ ((a)–(c)) and the weak coupling regime $g = 0.2\varGamma $ ((d)–(f)) with ${\varGamma _1} = 0$ .

    图  耦合强度 $\varOmega $ 和弱测量强度m取不同值时, 负性纠缠度 $N_3$ 在强耦合体系 $g = 0.5\varGamma $  ((a)和(c))和弱耦合体系 $g = 0.2\varGamma $ ((b)和(d))下随无量纲时间 $\varGamma t$ 的变化曲线. 其中, ${\varGamma _1} = 0$

    Figure  2.  Negativity $N_3$ versus dimensionless time $\varGamma t$ for the different values of coupling strength $\varOmega $ and the weak measurement strength $m$ in the strong coupling regime $g = 0.5\varGamma $ ((a) and (c)) and the weak coupling regime $g = 0.2\varGamma $ ((b) and (d)) with ${\varGamma _1} = 0$ .

    图  Bell函数 $\left| {\left\langle {{B}} \right\rangle } \right| - 1$ 在强耦合体系 $g = 0.5\varGamma $  ((a)和(c))和弱耦合体系 $g = 0.2\varGamma $ ((b)和(d))下随无量纲时间 $\varGamma t$ 的变化曲线. 其他参数取值与图2相同

    Figure  3.  The change of Bell function $\left| {\left\langle {{B}} \right\rangle } \right| - 1$ as a function of $\varGamma t$ in the strong coupling regime $g = 0.5\varGamma $ ((a) and (c)) and the weak coupling regime $g = 0.2\varGamma $ ((b) and (d)). The values of other parameters are the same as those in Fig. 2.

    图  纠缠目击 $ - {\rm{EWs}}$ 在强 ((a), (c))、弱((b), (d))耦合体系下的动力学行为. 其他参数取值与图2相同

    Figure  4.  Dynamics of entanglement witnesses $ - {\rm{EWs}}$ in the strong ((a), (b)) and the weak ((c), (d)) coupling regimes. The values of other parameters are the same as those in Fig. 2(a).

    图  量子关联在强耦合体系 $g = 0.5\varGamma $  ((a)和(c))和弱耦合体系 $g = 0.2\varGamma $ ((b)和(d))下的变化曲线. 其中, (a)和(b)无弱测量操作, (c)和(d)有弱测量操作. 参数 $\varOmega = \varGamma $ ${\varGamma _1} = 0.25\varGamma $

    Figure  5.  Change curves of quantum correlation in the strong coupling regime $g = 0.5\varGamma $ ((a) and (c)) and the weak coupling regime $g = 0.2\varGamma $ ((b) and (d)), where (a) and (b) are the cases without measurement, while (c) and (d) are the cases with measurement. The parameters $\varOmega $ and ${\varGamma _1}$ are set to $\varGamma $ and $0.25\varGamma $ , respectively.

  • [1] Paneru D, Cohen E, Fickler R, Boyd R W, Karimi E 2020 Rep. Prog. Phys. 83 064001 doi: 10.1088/1361-6633/ab85b9
    [2] Su Z F, Tan H S, Li X Y 2020 Phys. Rev. A 101 042112 doi: 10.1103/PhysRevA.101.042112
    [3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895 doi: 10.1103/PhysRevLett.70.1895
    [4] Kura N, Ueda M 2020 Phys. Rev. Lett. 124 010507 doi: 10.1103/PhysRevLett.124.010507
    [5] Hu X M, Xing W B, Liu B H, Huang Y F, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 090503 doi: 10.1103/PhysRevLett.125.090503
    [6] Sabín C, García-Alcaine G 2007 Eur. Phys. J. D 48 435 doi: 10.1140%2Fepjd%2Fe2008-00112-5
    [7] Maity A G, Das D, Ghosal A, Roy A, Majumdar A S 2020 Phys. Rev. A 101 042340 doi: 10.1103/PhysRevA.101.042340
    [8] Rosset D, Branciard C, Barnea T J, Pütz G, Brunner N, Gisin N 2016 Phys. Rev. Lett. 116 010403 doi: 10.1103/PhysRevLett.116.010403
    [9] Altintas F, Eryigit R 2010 Phys. Lett. A 374 4283 doi: 10.1016/j.physleta.2010.08.060
    [10] Anwer H, Nawareg M, Cabello A, Bourennane M 2019 Phys. Rev. A 100 022104 doi: 10.1103/PhysRevA.100.022104
    [11] Shin D K, Henson B M, Hodgman S S, Wasak T, Chwedeńczuk J, Truscott A G 2019 Nature 10 4447
    [12] Kuo W T, Akhtar A A, Arovas D P, You Y Z 2020 Phys. Rev. B 101 224202 doi: 10.1103/PhysRevB.101.224202
    [13] 刑贵超, 夏云杰 2018 物理学报 67 070301 doi: 10.7498/aps.67.20172546

    Xing G C, Xia Y J 2018 Acta Phys. Sin. 67 070301 doi: 10.7498/aps.67.20172546
    [14] Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404 doi: 10.1103/PhysRevLett.93.140404
    [15] López C E, Romero G, Lastra F, Solano E, Retamal J C 2008 Phys. Rev. Lett. 101 080503 doi: 10.1103/PhysRevLett.101.080503
    [16] Aguilar G H, Valdés-Hernández A, Davidovich L, Walborn S P, Souto Ribeiro P H 2014 Phys. Rev. Lett. 113 240501 doi: 10.1103/PhysRevLett.113.240501
    [17] Antonelli C, Shtaif M, Brodsky M 2011 Phys. Rev. Lett. 106 080404 doi: 10.1103/PhysRevLett.106.080404
    [18] Bellomo B, Lo Franco R, Compagno G 2007 Phys. Rev. Lett. 99 160502 doi: 10.1103/PhysRevLett.99.160502
    [19] Mohamed A B A, Eleuch H, Raymond Ooi C H 2019 Sci. Rep. 9 19632 doi: 10.1038/s41598-019-55548-2
    [20] Deordi G L, Vidiella-Barranco A 2020 Opt. Commun. 475 126233 doi: 10.1016/j.optcom.2020.126233
    [21] Pramanik T, Cho Y W, Han S W, Lee S Y, Moon S, Kim Y S 2019 Phys. Rev. A 100 042311 doi: 10.1103/PhysRevA.100.042311
    [22] Hu M L 2012 Ann. Phys. 327 2332 doi: 10.1016/j.aop.2012.05.007
    [23] Weilenmann M, Dive B, Trillo D, Aguilar E A, Navascués M 2019 Phys. Rev. Lett. 124 200502
    [24] Zhou Y 2020 Phys. Rev. A 101 012301 doi: 10.1103/PhysRevA.101.012301
    [25] Hanson R, Dobrovitski V V, Feiguin A E, Gywat O, Awschalom D D 2008 Science 320 352 doi: 10.1126/science.1155400
    [26] Man Z X, Xia Y J, Rosario L F 2015 Phys. Rev. A 92 012315 doi: 10.1103/PhysRevA.92.012315
    [27] Basit A, Ali H, Badshah F, Zhang H Y, Ge G Q 2017 Laser Phys. Lett. 14 125202 doi: 10.1088/1612-202X/aa8bc8
    [28] Bai X M, Xue N T, Liu N, Li J Q, Liang J Q 2019 Ann. Phys. 531 1900098 doi: 10.1002/andp.201900098
    [29] Xu K, Zhang G F, Zhou Y, Liu W M 2020 J. Opt. Soc. Am. B 37 933 doi: 10.1364/JOSAB.383699
    [30] Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117 doi: 10.1038/nphys2178
    [31] Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103(R doi: 10.1103/PhysRevA.81.040103
    [32] He Z, Zeng H S 2020 Quantum Inf. Process. 19 299 doi: 10.1007/s11128-020-02791-6
    [33] Qiu L, Tang G, Yang X Q, Wang A 2014 Ann. Phys. 350 137 doi: 10.1016/j.aop.2014.07.012
    [34] Groen J P, Ristè D, Tornberg L, Cramer J, Degroot P C, Picot T, Johansson G, Dicarlo L 2013 Phys. Rev. Lett. 111 090506 doi: 10.1103/PhysRevLett.111.090506
    [35] Man Z X, Xia Y J, Rosario L F 2015 Sci. Rep. 5 13843 doi: 10.1038/srep13843
    [36] Gühne O, Tóth G 2009 Phys. Rep. 474 1 doi: 10.1016/j.physrep.2009.02.004
    [37] Xiao X, Yao Y, Zhong W J, Li Y L, Xie Y M 2016 Phys. Rev. A 93 012307 doi: 10.1103/PhysRevA.93.012307
  • 加载中
图(5)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  107
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-01-09
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回