留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用

王闯 鲍容容 潘曹峰

王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用[J]. 机械工程学报, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
引用本文: 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用[J]. 机械工程学报, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
Wang Chuang, Bao Rong-Rong, Pan Cao-Feng. Research and application of flexible wearable electronics based on nanogenerator in touch sensor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
Citation: Wang Chuang, Bao Rong-Rong, Pan Cao-Feng. Research and application of flexible wearable electronics based on nanogenerator in touch sensor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157

基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用

doi: 10.7498/aps.70.20202157
基金项目: 国家自然科学基金(批准号: U20A20166, 61675027, 61805015, 61804011)、科技部重点研发专项(批准号: 2016YFA0202703)、北京市自然科学基金(批准号: Z180011)和深圳市科技计划项目(批准号: KQTD20170810105439418)
详细信息
    通讯作者:

    E-mail: baorongrong@binn.cas.cn

    E-mail: cfpan@binn.cas.cn

  • 中图分类号: 07.07.Df, 87.19.lt, 43.60.Qv, 73.61.-r

Research and application of flexible wearable electronics based on nanogenerator in touch sensor

Funds: Project support by the National Natural Science Foundation of China (Grant Nos. U20A20166, 61675027, 61805015, 61804011), the National Key R & D Project From Minister of Science and Technology, China (Grant No. 2016YFA0202703), the Natural Science Foundation of Beijing, China (Grant No. Z180011), and the Shenzhen Science and Technology Program, China (Grant No. KQTD20170810105439418)
  • 摘要: 柔性可穿戴电子设备因其在人工智能、健康医疗等领域的应用而受到了人们的极大关注. 然而, 如何降低功耗或实现自供能一直是阻碍其广泛应用的瓶颈. 随着纳米发电机与自驱动技术的兴起, 尤其以摩擦纳米发电机(TENG)与压电纳米发电机(PENG)代表的研究, 为解决可穿戴传感器电源的问题提供了可行的方案. TENG和PENG分别基于摩擦起电效应与压电效应, 可以将机械能转化为电能, 同时具备可拉伸性、生物相容性和自愈性等优良特性, 已经广泛应用于自驱动的触觉传感器的设计制备中, 并作为下一代可穿戴电子设备的技术基础展现出巨大的应用潜力. 基于该领域的最新进展, 本文对TENG与PENG的机理进行概述, 对其性能优化途径进行归纳, 再结合材料、器件的设计等讨论应力应变与分布、滑移等纳米发电机自驱动传感器的制备与应用研究. 最后, 对自驱动触觉传感器目前存在的问题与挑战进行讨论, 并对未来的发展进行展望.

     

  • 图  摩擦纳米发电机的工作机理与四种工作模式[26]  (a)接触分离模式; (b)滑动摩擦声式; (c)单电极模式; (d)自由摩擦层模式

    Figure  1.  Working mechanism and four working modes of triboelectronic nanogenerator[26]: (a) Contact-separation mode; (b) lateral sliding mode; (c) single-electrode mode; (d) freestanding mode.

    图  ZnO的压电机理[30]  (a) ZnO原子模型示意图; (b) ZnO在压缩和拉伸下的极性变化示意图

    Figure  2.  The working principle of piezoelectric nanogerator[30]: (a) Schematic of ZnO atom model; (b) schematic of working mechanism of piezoelectric nano-generator under compression and tension.

    图  主体结构层的设计与性能优化 (a)微纳加工技术制备的微金字塔与微柱状结构的TENG的SEM图像[15]; (b)表面具有微柱结构的PENG结构示意图[47]; (c)在FEP表面进行表面极化示意图[55]; (d) gC3N4, PANI纳米棒, DMF和PVDF链之间相互作用机制示意图[48]

    Figure  3.  Design and performance optimization of the main structure layer: (a) SEM images of micropyramid and microcolumnar TENG prepared by micro-nano processing techniques[15]; (b) schematic diagram of PENG structure with microcolumn structure on the surface[47]; (c) schematic diagram of negative ion implantation on the FEP surface[55]; (d) schematic diagram of the interaction mechanism between gC3N4, PANI nanorods, DMF and PVDF chains[48].

    图  电极的设计与优化 (a)VHB胶带上的透明及可拉伸双层CG照片[56]; (b)制造的石墨烯/聚合物混合透明电极的照片[57]; (c)具有自愈合功能的可拉伸导体照片[66]

    Figure  4.  Design and optimization of electrode: (a) The photo of stretch image and double layer CG transparency on VHB tape[56]; (b) the photo of fabrication of the graphene/polymer hybrid transparent electrode[57]; (c) the photo of stretchable conductor with a self-healing function[66].

    图  基于TENG的压力传感器 (a)TES的结构示意图[67]; (b), (c)通过手指按压TES的无线报警系统与实际输出电压[67]; (d) TATSA结构示意图[68]; (e)不同年龄段人群脉搏输出信号[68]; (f)健康参与者的呼吸信号和PTT[68]

    Figure  5.  The pressure sensor based on TENG: (a) Schematic diagram of TES[67]; (b), (c) press TES wireless alarm system with finger and actual output voltage[67]; (d) schematic diagram of TATSA[68]; (e) pulse output signals of different age groups[68]; (f) respiratory signals and PTT of healthy participants[68].

    图  基于PENG的压力传感器[69]  (a)TVH/COC压电纳米发电机实物图; (b), (d)食指敲击, 拇指按压, 重击桌面所检测到的压力与商用测力计所对应的压力对比图

    Figure  6.  The pressure sensor based on PENG[69]: (a) Physical picture of TVH/COC piezoelectric nanogenerator; (b), (d) the diagram comparing the pressure detected by tapping the index finger, pressing the thumb, and thumping the table with the pressure corresponding to a commercial dynamometer.

    图  基于TENG的应变传感器 (a)TENG与机械手结合的的照片与示意图[72]; (b)在一个接触和分离过程中反向电流信号曲线[72]; (c)中指的两个不同随机运动的转移电荷曲线[72]; (d)仿生可拉伸纳米发电机(BSNG)(填充红色墨水)的一个工作周期的照片[73]; (e)BSNG工作机制示意图[73]; (f)基于仿生伸缩性纳米发生器(BSNG)水下无线多站点人体运动监控系统的示意图[73]

    Figure  7.  Strain sensor based on TENG: (a) Photos and schematic diagram of the combination of TENG and manipulator[72]; (b) reverse current signal during a contact and separation process[72]; (c) the transfer charge curves of two different random motions in the middle finger[72]; (d) a photo of a working cycle of the bionic stretchable nanogenerator (BSNG) (filled with red ink)[73]; (e) schematic diagram of the working mechanism of BSNG[73]; (f) schematic diagram of underwater wireless multi-site human motion monitoring system based on bionic flexible nanogenerator (BSNG)[73].

    图  基于PENG的应变传感器[74]  (a)TFPS结构示意图; (b)TFPS工作原理图; (c)多部位运动所对应的电压输出关系图

    Figure  8.  Strain sensor based on PENG[74]: (a) the structure diagram of TFPS; (b) the schematic diagram TFPS operating; (c) the voltage output diagram corresponding to the multi-position motion.

    图  基于TENG的压力分布传感器 (a) 16 × 16阵列器件结构示意[81]; (b)压力分布监测过程的示意图[81]; (c) 36 × 20矩阵交叉型电极的器件结构示意图[81]; (d)基于TENG的压力分布传感器在商用智能手机中的应用[81]; (e) SETY的阵列结构示意图[82]; (f), (g)单点触碰时压力分布信号示意图及 3D输出信号示意图[82]; (h)昆虫接触传感器时的信号输出曲线[82]

    Figure  9.  Pressure distribution sensor based on TENG: (a) The schematic diagram of device structure of 16 × 16 arrys[81]; (b) the process diagram of pressure distribution detection[81]; (c) schematic diagram of device structureof 36 × 20 matrix crossed electrode[81]; (d) pressure distribution sensor based on TENG appllied for a commercial smart phone[81]; (e) schematic diagram of the array structure of SETY[82]; (f), (g) schematic diagram of pressure distribution signal and 3D output signal in single point contact the device[82]; (h) signal output curve of ainsect contact the sensor[82].

    图  10  基于PENG的压力分布传感器[83]  (a)SPENG的实物照片; (b)单点触碰时的压力分布的3D信号示意图

    Figure  10.  The pressure distribution based on PENG[83]: (a) Physical schematic diagram of SPENG; (b) schematic diagram of 3D output signal under pressure distribution signal at single point contact.

    图  11  基于TENG的滑动传感器 (a)指纹结构启发的TENG及其工作原理, 包含四个螺旋电极的示意图和照片[88]; (b)外部物体沿着不同方向接触传感器时的电压信号变化图[88]; (c) TENG传感器结构设计示意图和照片[89]; (d)检测施加斜侧45°方向切向力的动态输出关系曲线[89]

    Figure  11.  The sliding sensor based on TENG: (a) A schematic diagram and photograph of a fingerprint-structure-inspired TENG and how it works, including four spiral electrodes[88]; (b) the signal of the voltage when the external object is in contact in different directions[88]; (c) the schematic diagram and photo of the TENG sensor structure and of real product[89]; (d) detection of dynamic output of the tangential force in the 45° direction[89].

  • [1] Chortos A, Bao Z 2014 Mater. Today 17 321 doi: 10.1016/j.mattod.2014.05.006
    [2] Hammock M L, Chortos A, Tee C K, Tok B H, Bao Z 2013 Adv. Mater. 25 5997 doi: 10.1002/adma.201302240
    [3] Wang C, Hwang D, Yu Z B, Takei K, Park J, Chen T, Ma B, Javey A 2013 Nat. mater. 12 899 doi: 10.1038/nmat3711
    [4] Wang Z L, Song J H 2006 Science 312 242 doi: 10.1126/science.1124005
    [5] Tee B C-K, Chortos A, Berndt A, Nguyen A K, Tom A, Mcguire A, Lin Z C, Tien K, Bae W-G, Wang H 2015 Science 350 313 doi: 10.1126/science.aaa9306
    [6] Zhao G, Zhang Y, Shi N, Liu Z, Zhang X, Wu M, Pan C, Liu H, Li L, Wang Z L 2019 Nano Energy 59 302 doi: 10.1016/j.nanoen.2019.02.054
    [7] Liu Y, Bao R, Tao J, Li J, Dong M, Pan C 2020 Sci. Bull 65 70 doi: 10.1016/j.scib.2019.10.021
    [8] Wu X, Chen Y, Xing Z, Lam C W K, Pang S S, Zhang W, Ju Z 2019 Adv. Energy Mater. 9 1900343 doi: 10.1002/aenm.201900343
    [9] Dong K, Deng J, Zi Y, Wang Y, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang Z L 2017 Adv. Mater. 29 1702648 doi: 10.1002/adma.201702648
    [10] 王中林, 林龙, 陈俊, 牛思淼, 訾云龙 2017 摩擦纳米发电机 (北京: 科学出版社) 第14页

    Wang Z L, Lin L, Chen J, Niu S M, Zi Y L 2017 Trieboelectronic Nanogenerators (Beijing: Science Press) p14 (in Chinese)
    [11] Wang Z L 2014 Faraday Discuss. 176 447 doi: 10.1039/C4FD00159A
    [12] Zhu G, Peng B, Chen J, Jing Q, Wang Z L 2015 Nano Energy 14 126 doi: 10.1016/j.nanoen.2014.11.050
    [13] Wang Z L 2020 Nano Energy 68 104272 doi: 10.1016/j.nanoen.2019.104272
    [14] Fan F R, Tian Z Q, Zhong L W 2012 Nano Energy 1 328 doi: 10.1016/j.nanoen.2012.01.004
    [15] Fan F, Lin L, Zhu G, Wu W, Zhang R, Wang Z L 2012 Nano Lett. 12 3109 doi: 10.1021/nl300988z
    [16] Niu S, Wang S, Lin L, Liu Y, Zhou Y, Hu Y, Wang Z L 2013 Energy Environ. Sci. 6 3576 doi: 10.1039/c3ee42571a
    [17] Niu S, Wang S, Liu Y, Zhou Y, Lin L, Hu Y, Pradel K C, Wang Z L 2014 Energy Environ. Sci. 7 2339 doi: 10.1039/C4EE00498A
    [18] Zhu G, Chen J, Zhang T J, Jing Q S, Wang Z L 2014 Nat. Commun. 5 3426 doi: 10.1038/ncomms4426
    [19] Niu S, Liu Y, Wang S, Lin L, Zhou Y, Hu Y, Wang Z L 2013 Adv. Mater. 25 6184 doi: 10.1002/adma.201302808
    [20] Niu S, Liu Y, Wang S, Lin L, Zhou Y, Hu Y, Wang Z L 2014 Adv. Funct. Mater. 24 3332 doi: 10.1002/adfm.201303799
    [21] Xiong J, Lin M, Wang J, Gaw S L, Parida K, Lee P S 2017 Adv. Energy. Mater. 7 1701243 doi: 10.1002/aenm.201701243
    [22] Lin M, Parida K, Cheng X, Lee P S 2017 Adv. Mater. Technol-Us. 2 1600186 doi: 10.1002/admt.201600186
    [23] Wang S, Xie Y, Niu S, Lin L, Wang Z L 2014 Adv. Mater. 26 2818 doi: 10.1002/adma.201305303
    [24] Niu S, Liu Y, Chen X, Wang S, Zhou Y, Lin L, Xie Y, Wang Z L 2015 Nano Energy 12 760 doi: 10.1016/j.nanoen.2015.01.013
    [25] Xie Y, Wang S, Niu S, Long L, Jing Q, Jin Y, Wu Z, Zhong L W 2014 Adv. Mater. 26 6599 doi: 10.1002/adma.201402428
    [26] Chen H, Song Y, Cheng X, Zhang H 2018 Nano Energy 56 252 doi: 10.1016/j.nanoen.2018.11.061
    [27] Henniker J 1962 Nature 196 474 doi: 10.1038/196474a0
    [28] Davies D K 2002 J. Phys. D. 2 1533
    [29] Zhong L W 2013 ACS Nano 7 9533 doi: 10.1021/nn404614z
    [30] Zheng Q, Shi B J, Li Z, Wang Z L, 2017 Adv. Sci. 4 1700029 doi: 10.1002/advs.201700029
    [31] Karan S K, Bera R, Paria S, Das A K, Maiti S, Maitra A, Khatua B B 2016 Adv. Energy. Mater. 6 1601016 doi: 10.1002/aenm.201601016
    [32] Kim M K, Kim M S, Kwon H B, Jo S E, Kim Y 2017 RSC Adv. 7 48368 doi: 10.1039/C7RA07623A
    [33] Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102 doi: 10.1126/science.1139366
    [34] Zhuang Y, Xu Z, Li F, Liao Z, Liu W 2015 J. Alloys Compd. 629 113 doi: 10.1016/j.jallcom.2014.12.239
    [35] Fang H, Wang X, Li Q, Peng D, Yan Q, Pan C 2016 Adv. Energy. Mater. 6 1600829 doi: 10.1002/aenm.201600829
    [36] Gong H, Xu Z, Yang Y, Xu Q, Li X, Cheng X, Huang Y, Zhang F, Zhao J Z, LiS, Liu X, Huang Q, Guo W 2020 Biosens. Bioelectron. 169 112567 doi: 10.1016/j.bios.2020.112567
    [37] Tat T, Libanori A, Au C, Yau A, Chen J 2021 Biosens. Bioelectron. 171 112714 doi: 10.1016/j.bios.2020.112714
    [38] Zhu G, Yang R, Wang S, Wang Z L 2010 Nano Lett. 10 3151 doi: 10.1021/nl101973h
    [39] Wang Z L 2012 MRS Bulletin 37 814 doi: 10.1557/mrs.2012.186
    [40] Kwon J, Seung W, Sharma B K, Kim S, Ahn J 2012 Energy Environ. Sci. 5 8970 doi: 10.1039/c2ee22251e
    [41] Bhavanasi V, Kumar V, Parida K, Wang J, Lee P S 2016 ACS Appl. Mater. Inter. 8 521 doi: 10.1021/acsami.5b09502
    [42] Jeong C K, Baek K M, Niu S, Nam T W, Hur Y H, Park D Y, Hwang G T, Byun M, Wang Z L, Jung Y S 2014 Nano Lett. 14 7031 doi: 10.1021/nl503402c
    [43] Choi H J, Lee J H, Jun J, Kim T Y, Kim S W, Lee H 2016 Nano Energy 27 595 doi: 10.1016/j.nanoen.2016.08.014
    [44] Jang D, Kim Y, Kim T Y, Koh K, Jeong U, Cho J 2016 Nano Energy 20 283 doi: 10.1016/j.nanoen.2015.12.021
    [45] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201 doi: 10.7498/aps.68.20190806

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201 doi: 10.7498/aps.68.20190806
    [46] Zhu G, Pan C, Guo W, Chen C Y, Zhou Y, Yu R, Wang Z L 2012 Nano Lett. 12 4960 doi: 10.1021/nl302560k
    [47] Chen X, Li X, Shao J, An N, Tian H, Wang C, Han T, Wang L, Lu B 2017 Small 13 1604245 doi: 10.1002/smll.201604245
    [48] Khalifa M, Anandhan S 2019 ACS Appl. Nano Mater. 2 7328 doi: 10.1021/acsanm.9b01812
    [49] Ouyang H, Tian J, Sun G, Zou Y, Liu Z, Li H, Zhao L, Shi B, Fan Y, Fan Y, Wang Z L, Li Z 2017 Adv. Mater. 29 1703456 doi: 10.1002/adma.201703456
    [50] Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X 2014 Nano Energy 4 123 doi: 10.1016/j.nanoen.2013.12.016
    [51] Yun B K, Kim J W, Kim H S, Jung K W, Yi Y, Jeong M S, Ko J H, Jung J H 2015 Nano Energy 15 523 doi: 10.1016/j.nanoen.2015.05.018
    [52] Li H Y, Su L, Kuang S Y, Pan C F, Zhu G, Wang Z L 2015 Adv. Funct. Mater. 25 5691 doi: 10.1002/adfm.201502318
    [53] Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang A C, Xu C, Wang Z L 2019 Nat. Commun. 10 1427 doi: 10.1038/s41467-019-09461-x
    [54] Kim D W, Lee J H, Kim J K, Jeong U 2020 NPG Asia Mater. 12 6 doi: 10.1038/s41427-019-0176-0
    [55] Wang S, Xie Y, Niu S, Lin L, Liu C, Zhou Y, Wang Z L 2014 Adv. Mater. 26 6720 doi: 10.1002/adma.201402491
    [56] Chen H, Xu Y, Zhang J, Wu W, Song G 2019 Nano Energy 58 304 doi: 10.1016/j.nanoen.2019.01.029
    [57] Yang J, Liu P, Wei X, Luo W, Yang J, Jiang H, Wei D, Shi R, Shi H F 2017 ACS Appl. Mater. Inter. 9 36017 doi: 10.1021/acsami.7b10373
    [58] Parida K, Xiong J, Zhou X, Lee P S 2019 Nano Energy 59 237 doi: 10.1016/j.nanoen.2019.01.077
    [59] Deng J, Kuang X, Liu R, Ding W, Wang A, Lai Y C, Dong K, Wen Z, Wang Y X, Wang Z L 2018 Adv. Mater. 30 1705918 doi: 10.1002/adma.201705918
    [60] Parida K, Thangavel G, Cai G, Zhou X, Park S, Xiong J, Lee P S 2019 Nat. Commun. 10 2158 doi: 10.1038/s41467-019-10061-y
    [61] Belanger M C, Marois Y 2001 J. Biomed. Mater. Res. 58 467 doi: 10.1002/jbm.1043
    [62] Starr P, Agrawal C M, Bailey S 2016 J. Biomed. Mater. Res. Part A 104 406 doi: 10.1002/jbm.a.35578
    [63] Seitz H, Marlovits S, Schwendenwein I, Müller E, Vécsei V 1998 Biomaterials 19 189 doi: 10.1016/S0142-9612(97)00201-9
    [64] Zhang H, Ye X J, Li J S 2009 Biomed. Mater. 4 045007 doi: 10.1088/1748-6041/4/4/045007
    [65] Cao Y, Wu H, Allec S I, Wong B M, Nguyen D S, Wang C 2018 Adv. Mater. 30 1804602 doi: 10.1002/adma.201804602
    [66] Parida K, Kumar V, Jiangxin W, Bhavanasi V, Bendi R, Lee P S 2017 Adv. Mater. 29 1702181 doi: 10.1002/adma.201702181
    [67] Zhu G, Yang W Q, Zhang T, Jing Q, Chen J, Zhou Y S, Bai P, Wang Z L 2014 Nano Lett. 14 3208 doi: 10.1021/nl5005652
    [68] Fan W, He Q, Meng K, Tan X, Zhou Z, Zhang G, Yang J, Wang Z L 2020 Sci. Adv. 6 eaay2840 doi: 10.1126/sciadv.aay2840
    [69] Li W, Duan J, Zhong J, Wu N, Lin S, Xu Z, Chen S, Pan Y, Huang L, Hu B 2018 ACS Appl. Mater. Inter. 10 29675 doi: 10.1021/acsami.8b11121
    [70] Niu X, Jia W, Qian S, Zhu J, Zhang J, Hou X, Mu J, Geng W, Cho J, He J, Chou X 2019 ACS Sustainable Chem. Eng. 7 979 doi: 10.1021/acssuschemeng.8b04627
    [71] Hwang B, Lee J, Trung T Q, Roh E, Kim D, Kim S W, Lee N E 2015 ACS Nano 9 8801 doi: 10.1021/acsnano.5b01835
    [72] Jin L, Tao J, Bao R, Sun L, Pan C 2017 Sci. Rep. 7 10521 doi: 10.1038/s41598-017-10990-y
    [73] Zou Y, Tan P C, Shi B J, Ouyang H, Jiang D J, Liu Z, Li H, Yu M, Wang Ch, Qu X C, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 Nat. Commun. 10 2695 doi: 10.1038/s41467-019-10433-4
    [74] Kim K, Jang W, Cho J Y, Woo S B, Jeon D H, Ahn J H, Hong S D, Koo H Y, Sung T H 2018 Nano Energy 54 91 doi: 10.1016/j.nanoen.2018.09.056
    [75] Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C 2018 Adv. Mater. 30 1706738 doi: 10.1002/adma.201706738
    [76] Yuan Z, Zhou T, Yin Y, Cao R, Li C, Wang Z L 2017 ACS Nano 11 8364 doi: 10.1021/acsnano.7b03680
    [77] Yang Z W, Pang Y, Zhang L, Lu C, Chen J, Zhou T, Zhang C, Wang Z L 2016 ACS Nano 10 10912 doi: 10.1021/acsnano.6b05507
    [78] Guo H, Wan J, Wu H, Wang H, Miao L, Song Y, Chen H, Han M, Zhang H X 2020 ACS Appl. Mater. Inter. 12 22357 doi: 10.1021/acsami.0c03510
    [79] Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1805277 doi: 10.1002/adfm.201805277
    [80] Zhu X X, Meng X S, Kuang S Y, Wang X D, Pan C, Zhu G, Wang Z L 2017 Nano Energy 41 387 doi: 10.1016/j.nanoen.2017.09.025
    [81] Wang X, Zhang H, Dong L, Han X, Du W, Zhai J, Pan C, Wang Z L 2016 Adv. Mater. 28 2896 doi: 10.1002/adma.201503407
    [82] Ma L, Zhou M, Wu R, Patil A, Gong H, Zhu S, Wang T, Zhang Y, Shen S, Dong K, Yang L, Wang J, Guo W, Wang Z L 2020 ACS Nano 14 4716 doi: 10.1021/acsnano.0c00524
    [83] Wang X, Song W Z, You M H, Zhang J, Yu M, Fan Z Y, Ramakrishna S, Long Y Z 2018 ACS Nano 12 8588 doi: 10.1021/acsnano.8b04244
    [84] Li S, Peng W, Wang J, Lin L, Zi Y, Zhang G, Wang Z L 2016 Acs Nano 10 7973 doi: 10.1021/acsnano.6b03926
    [85] Shi M, Zhang J, Chen H, Ha nM, Shankaregowda S A, S uZ, Meng B, ChengX, Zhang H 2016 ACS Nano 10 4083 doi: 10.1021/acsnano.5b07074
    [86] ChenM, L iX, Lin L, Du W, Ha nX, Zhu J, Pan C, Wang Z L 2014 Adv. Funct. Mater. 24 5059 doi: 10.1002/adfm.201400431
    [87] Jing Q, Xie Y, Zhu G, Han R P S, Wang Z L 2015 Nat. Commun. 6 8031 doi: 10.1038/ncomms9031
    [88] Chen H, Song Y, Guo H, Miao L, Chen X, Su Z, Zhang H 2018 Nano Energy 51 496 doi: 10.1016/j.nanoen.2018.07.001
    [89] Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1802989 doi: 10.1002/adfm.201802989
  • 加载中
图(11)
计量
  • 文章访问数:  433
  • HTML全文浏览量:  151
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 修回日期:  2021-01-21

目录

    /

    返回文章
    返回